Bhoj Gautam
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bhoj Gautam.
Advanced Materials | 2017
Zhong Zheng; Omar Awartani; Bhoj Gautam; Delong Liu; Yunpeng Qin; Wanning Li; Alexander Bataller; Kenan Gundogdu; Harald Ade; Jianhui Hou
Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation.
Energy and Environmental Science | 2017
Yongxi Li; Lian Zhong; Bhoj Gautam; Haijun Bin; Jiu-Dong Lin; Fu-Peng Wu; Zhanjun Zhang; Zuo-Quan Jiang; Zhi-Guo Zhang; Kenan Gundogdu; Yongfang Li; Liang-Sheng Liao
Low-bandgap polymers/molecules are an interesting family of semiconductor materials, and have enabled many recent exciting breakthroughs in the field of organic electronics, especially for organic photovoltaics (OPVs). Here, such a low-bandgap (1.43 eV) non-fullerene electron acceptor (BT-IC) bearing a fused 7-heterocyclic ring with absorption edge extending to the near-infrared (NIR) region was specially designed and synthesized. Benefitted from its NIR light harvesting, high performance OPVs were fabricated with medium bandgap polymers (J61 and J71) as donors, showing power conversion efficiencies of 9.6% with J61 and 10.5% with J71 along with extremely low energy loss (0.56 eV for J61 and 0.53 eV for J71). Interestingly, femtosecond transient absorption spectroscopy studies on both systems show that efficient charge generation was observed despite the fact that the highest occupied molecular orbital (HOMO)–HOMO offset (ΔEH) in the blends was as low as 0.10 eV, suggesting that such a small ΔEH is not a crucial limitation in realizing high performance of NIR non-fullerene based OPVs. Our results indicated that BT-IC is an interesting NIR non-fullerene acceptor with great potential application in tandem/multi-junction, semitransparent, and ternary blend solar cells.
Nature Communications | 2012
Ye Zhang; Tek Basel; Bhoj Gautam; Xiaomei Yang; Debra Mascaro; Feng Liu; Z. Valy Vardeny
Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.
Nature Communications | 2014
Ayeleth H. Devir-Wolfman; Bagrat Khachatryan; Bhoj Gautam; Lior Tzabary; Amit Keren; Nir Tessler; Z. Valy Vardeny; E. Ehrenfreund
The main route of charge photogeneration in efficient organic photovoltaic cells based on bulk hetero-junction donor-acceptor blends involves short-lived charge-transfer excitons at the donor-acceptor interfaces. The cell efficiency is critically affected by the charge-transfer exciton recombination and dissociation processes. By measuring the magneto-photocurrent under ambient conditions at room temperature, we show here that magnetic field-induced spin-mixing among the charge-transfer exciton spin sublevels occurs in fields up to at least 8.5 Tesla. The resulting magneto-photocurrent increases at high fields showing non-saturating behaviour up to the highest applied field. We attribute the observed high-field spin-mixing mechanism to the difference in the donor-acceptor g-factors. The non-saturating magneto-photocurrent response at high field indicates that there exist charge-transfer excitons with lifetime in the sub-nanosecond time domain. The non-Lorentzian high-field magneto-photocurrent response indicates a dispersive decay mechanism that originates due to a broad distribution of charge-transfer exciton lifetimes.
Advanced Science | 2016
Zonglong Zhu; Qifan Xue; Hexiang He; Kui Jiang; Zhicheng Hu; Yang Bai; Teng Zhang; Shuang Xiao; Kenan Gundogdu; Bhoj Gautam; Harald Ade; Fei Huang; Kam Sing Wong; Hin-Lap Yip; Shihe Yang; He Yan
A polymer/PCBM hybrid electron transport layer is reported that enables high‐performance perovskite solar cells with a high power conversion efficiency of 16.2% and with negligible hysteresis. Unlike previous approaches of reducing hysteresis by thermal annealing or fullerene passivation, the success of our approach can be mainly attributed to the doping of the PCBM layer using an insulating polymer (polystyrene) and an amine‐containing polymeric semiconductor named PFNOX.
Journal of Materials Chemistry | 2014
Hammad Cheema; Ashraful Islam; Liyuan Han; Bhoj Gautam; Robert Younts; Kenan Gundogdu; Ahmed El-Shafei
A novel heteroleptic Ru(II) bipyridyl complex (HD-1-mono) was molecularly designed with a mono-carbazole ancillary ligand, synthesized and characterized for DSCs. The aim was to systematically study the influence of mono (HD-1-mono) versus bis-carbazole ancillary ligand (NCSU-10) on molar absorptivity, light harvesting efficiency (LHE), ground and excited state oxidation potentials, incident-photon-to-current conversion efficiency (IPCE), electron injection from the first excited singlet and triplet states, short-circuit photocurrent density (Jsc), and total solar-to-electric conversion efficiency (η) for DSCs. This study showed that HD-1-mono exhibited slightly lower Voc but greater Jsc compared to NCSU-10. Though HD-1-mono showed lower extinction coefficient than NCSU-10, interestingly, it was found that the decrease in molar extinction coefficient of HD-1-mono is not directly related to the short-circuit photocurrent density (Jsc). For example, HD-1-mono showed a higher Jsc of 21.4 mA cm−2 without the presence of any additives. However, under optimized conditions, HD-1-mono showed a Jsc of 19.76 mA cm−2, Voc of 0.68 V, and (%η) of 9.33 compared to a Jsc of 19.58 mA cm−2, Voc of 0.71 and (%η) of 10.19 for NCSU-10, where N719 achieved a Jsc of 16.85 mA cm−2, Voc of 0.749 V and (%η) of 9.33 under the same experimental device conditions. Impedance results for HD-1-mono showed a shorter recombination time as compared to N719 and NCSU-10, which justify its lower Voc. Femtosecond transient absorption spectroscopy results elucidated that electron injection from the first triplet state is 63% more efficient for HD-1-mono than that of NCSU-10.
Journal of Applied Physics | 2013
Bhoj Gautam; Tho Duc Nguyen; E. Ehrenfreund; Z. Valy Vardeny
We performed spectroscopy of the magnetic field effect (MFE) including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in annealed and pristine fullerene C60 thin films, as well as magneto-conductance (MC) in organic diodes based on C60 interlayer. The hyperfine interaction has been shown to be the primary spin mixing mechanism for the MFE in the organics. In this respect, C60 is a unique material because 98.9% of the carbon atoms are 12C isotope, having spinless nucleus and thus lack hyperfine interaction. In spite of this, we obtained substantial MPA (up to ∼15%) and significant MC and MPL in C60 films and devices, and thus mechanisms other than the hyperfine interaction are responsible for the MFE in this material. Specifically, we found that the MFE(B) response is composed of narrow (∼10 mT) and broad (>100 mT) components. The narrow MFE(B) component is due to spin-dependent triplet exciton recombination in C60, which dominates the MPA(B) response a...
Advanced Materials | 2017
Robert Younts; Hsin-Sheng Duan; Bhoj Gautam; Bayrammurad Saparov; Jie Liu; Cédric Mongin; Felix N. Castellano; David B. Mitzi; Kenan Gundogdu
Triplet excitons form in quasi-2D hybrid inorganic-organic perovskites and diffuse over 100 nm before radiating with >11% photoluminescence quantum efficiency (PLQE) at low temperatures.
ACS Applied Materials & Interfaces | 2015
Bhoj Gautam; Changyeon Lee; Robert Younts; Wonho Lee; Evgeny O. Danilov; Bumjoon J. Kim; Kenan Gundogdu
All-polymer solar cells exhibit rapid progress in power conversion efficiency (PCE) from 2 to 7.7% over the past few years. While this improvement is primarily attributed to efficient charge transport and balanced mobility between the carriers, not much is known about the charge generation dynamics in these systems. Here we measured exciton relaxation and charge separation dynamics using ultrafast spectroscopy in polymer/polymer blends with different molecular packing and morphology. These measurements indicate that preferential face-on configuration with intermixed nanomorphology increases the charge generation efficiency. In fact, there is a direct quantitative correlation between the free charge population in the ultrafast time scales and the external quantum efficiency, suggesting not only the transport but also charge generation is key for the design of high performance all polymer solar cells.
Applied Physics Letters | 2013
Dali Sun; Tek Basel; Bhoj Gautam; Wei Han; Xin Jiang; Stuart S. P. Parkin; Z. Valy Vardeny
We report a hybrid organic/inorganic magnetic-field controlled light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an OLED having efficient electroluminescence. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to ∼80% giant magneto-electroluminescence at room temperature with emission in the red, green, and blue spectral ranges.