Bhupinder Bawa
Kansas State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bhupinder Bawa.
Journal of Virology | 2013
Randall S. Prather; Raymond R. R. Rowland; Catherine Ewen; Benjamin R. Trible; Maureen Kerrigan; Bhupinder Bawa; Jennifer Teson; Jiude Mao; Kiho Lee; Melissa Samuel; Kristin M. Whitworth; Clifton N. Murphy; Tina Egen; Jonathan A. Green
ABSTRACT Surface expression of SIGLEC1, also known as sialoadhesin or CD169, is considered a primary determinant of the permissiveness of porcine alveolar macrophages for infection by porcine reproductive and respiratory syndrome virus (PRRSV). In vitro, the attachment and internalization of PRRSV are dependent on the interaction between sialic acid on the virion surface and the sialic acid binding domain of the SIGLEC1 gene. To test the role of SIGLEC1 in PRRSV infection, a SIGLEC1 gene knockout pig was created by removing part of exon 1 and all of exons 2 and 3 of the SIGLEC1 gene. The resulting knockout ablated SIGLEC1 expression on the surface of alveolar macrophages but had no effect on the expression of CD163, a coreceptor for PRRSV. After infection, PRRSV viremia in SIGLEC1 −/− pigs followed the same course as in SIGLEC1 −/+ and SIGLEC1 +/+ littermates. The absence of SIGLEC1 had no measurable effect on other aspects of PRRSV infection, including clinical disease course and histopathology. The results demonstrate that the expression of the SIGLEC1 gene is not required for infection of pigs with PRRSV and that the absence of SIGLEC1 does not contribute to the pathogenesis of acute disease.
Journal of Virology | 2012
Qinfang Liu; Chuanling Qiao; Henju Marjuki; Bhupinder Bawa; Jingqun Ma; Stephane Guillossou; Richard J. Webby; Juergen A. Richt; Wenjun Ma
ABSTRACT Triple reassortant swine influenza viruses (SIVs) and 2009 pandemic H1N1 (pH1N1) virus contain an avian-origin PB2 with 271A, 590S, 591R, and 627E. To evaluate the role of PB2 271A, 590S, and 591R in the replication and virulence of SIV, single (1930-TX98-PB2-271T)-, double (1930-TX98-PB2-590A591A)-, and triple (1930-TX98-PB2-271T590A591A)-mutated viruses were generated in the background of the H1N1 A/swine/Iowa/15/30 (1930) virus with an avian-origin PB2 from the triple-reassortant A/swine/Texas/4199-2/98 (TX98) virus, called the parental 1930-TX98-PB2. Compared to parental virus and single- and double-mutated viruses, the triple-mutated virus replicated less efficiently in cell cultures and was attenuated in mice. These results suggest that a combination of 271A with the 590/591 SR polymorphism is critical for pH1N1 and triple-reassortant SIVs for efficient replication and adaptation in mammals.
Journal of Virology | 2014
Qinfang Liu; Bin Zhou; Wenjun Ma; Bhupinder Bawa; Jingjiao Ma; Wei Wang; Yuekun Lang; Young S. Lyoo; Rebecca A. Halpin; Xudong Lin; Timothy B. Stockwell; Richard J. Webby; David E. Wentworth; Juergen A. Richt
ABSTRACT The fact that there have been more than 300 human infections with a novel avian H7N9 virus in China indicates that this emerging strain has pandemic potential. Furthermore, many of the H7N9 viruses circulating in animal reservoirs contain putative mammalian signatures in the HA and PB2 genes that are believed to be important in the adaptation of other avian strains to humans. To date, the definitive roles of these mammalian-signature substitutions in transmission and pathogenesis of H7N9 viruses remain unclear. To address this we analyzed the biological characteristics, pathogenicity, and transmissibility of A/Anhui/1/2013 (H7N9) virus and variants in vitro and in vivo using a synthetically created wild-type virus (rAnhui-WT) and two mutants (rAnhui-HA-226Q and rAnhui-PB2-627E). All three viruses replicated in lungs of intratracheally inoculated pigs, yet nasal shedding was limited. The rAnhui-WT and rAnhui-PB2-627E viruses were transmitted to contact animals. In contrast, the rAnhui-HA-226Q virus was not transmitted to sentinel pigs. Deep sequencing of viruses from the lungs of infected pigs identified substitutions arising in the viral population (e.g., PB2-T271A, PB2-D701N, HA-V195I, and PB2-E627K reversion) that may enhance viral replication in pigs. Collectively, the results demonstrate that critical mutations (i.e., HA-Q226L) enable the H7N9 viruses to be transmitted in a mammalian host and suggest that the myriad H7N9 genotypes circulating in avian species in China and closely related strains (e.g., H7N7) have the potential for further adaptation to human or other mammalian hosts (e.g., pigs), leading to strains capable of sustained human-to-human transmission. IMPORTANCE The genomes of the zoonotic avian H7N9 viruses emerging in China have mutations in critical genes (PB2-E627K and HA-Q226L) that may be important in their pandemic potential. This study shows that (i) HA-226L of zoonotic H7N9 strains is critical for binding the α-2,6-linked receptor and enables transmission in pigs; (ii) wild-type A/Anhui/1/2013 (H7N9) shows modest replication, virulence, and transmissibility in pigs, suggesting that it is not well adapted to the mammalian host; and (iii) both wild-type and variant H7N9 viruses rapidly develop additional mammalian-signature mutations in pigs, indicating that they represent an important potential intermediate host. This is the first study analyzing the phenotypic effects of specific mutations within the HA and PB2 genes of the novel H7N9 viruses created by reverse genetics in an important mammalian host model. Finally, this study illustrates that loss-of-function mutations can be used to effectively identify residues critical to zoonosis/transmission.
Journal of General Virology | 2012
Chuanling Qiao; Qinfang Liu; Bhupinder Bawa; Huigang Shen; Wenbao Qi; Ying Chen; Chris Ka Pun Mok; Adolfo García-Sastre; Jürgen A. Richt; Wenjun Ma
Both H9N2 avian influenza and 2009 pandemic H1N1 viruses (pH1N1) are able to infect humans and swine, which has raised concerns that novel reassortant H9 viruses with pH1N1 genes might be generated in these hosts by reassortment. Although previous studies have demonstrated that reassortant H9 viruses with pH1N1 genes show increased virulence in mice and transmissibility in ferrets, the virulence and transmissibility of reassortant H9 viruses in natural hosts such as chickens and swine remain unknown. This study generated two reassortant H9 viruses (H9N2/CA09 and H9N1/CA09) in the background of the pH1N1 A/California/04/2009 (CA09) virus by replacing either both the haemagglutinin (HA) and neuraminidase (NA) genes or only the HA gene with the respective genes from the A/quail/Hong Kong/G1/1997 (H9N2) virus and evaluated their replication, pathogenicity and transmission in chickens and pigs compared with the parental viruses. Chickens that were infected with the parental H9N2 and reassortant H9 viruses seroconverted. The parental H9N2 and reassortant H9N2/CA09 viruses were transmitted to sentinel chickens, but H9N1/CA09 virus was not. The parental H9N2 replicated poorly and was not transmitted in pigs, whereas both H9N2/CA09 and H9N1/CA09 viruses replicated and were transmitted efficiently in pigs, similar to the pH1N1 virus. These results demonstrated that reassortant H9 viruses with pH1N1 genes show enhanced replication and transmissibility in pigs compared with the parental H9N2 virus, indicating that they may pose a threat for humans if such reassortants arise in swine.
Journal of General Virology | 2012
Wenjun Ma; Qinfang Liu; Bhupinder Bawa; Chuanling Qiao; Wenbao Qi; Huigang Shen; Ying Chen; Jingqun Ma; Xi Li; Richard J. Webby; Adolfo García-Sastre; Jürgen A. Richt
The 2009 pandemic H1N1 virus (pH1N1) contains neuraminidase (NA) and matrix (M) genes from Eurasian avian-like swine influenza viruses (SIVs), with the remaining six genes from North American triple-reassortant SIVs. To characterize the role of the pH1N1 NA and M genes in pathogenesis and transmission, their impact was evaluated in the background of an H1N1 triple-reassortant (tr1930) SIV in which the HA (H3) and NA (N2) of influenza A/swine/Texas/4199-2/98 virus were replaced with those from the classical H1N1 A/swine/Iowa/15/30 (1930) virus. The laboratory-adapted 1930 virus did not shed nor transmit in pigs, but tr1930 was able to shed in infected pigs. The NA, M or both genes of the tr1930 virus were then substituted by those of pH1N1. The resulting virus with both NA and M from pH1N1 grew to significantly higher titre in cell cultures than the viruses with single NA or M from pH1N1. In a pig model, only the virus containing both NA and M from pH1N1 was transmitted to and infected sentinels, whereas the viruses with single NA or M from pH1N1 did not. These results demonstrate that the right combination of NA and M genes is critical for the replication and transmissibility of influenza viruses in pigs.
Journal of Virology | 2015
Qinfang Liu; Ignacio Mena; Jingjiao Ma; Bhupinder Bawa; Florian Krammer; Young S. Lyoo; Yuekun Lang; Igor Morozov; Gusti Ngurah Mahardika; Wenjun Ma; Adolfo García-Sastre; Juergen A. Richt
ABSTRACT Sporadic human infections by a novel H7N9 virus occurred over a large geographic region in China. In this study, we show that Newcastle disease virus (NDV)-vectored H7 (NDV-H7) and NDV-H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively. Notably, a baculovirus-expressed H7 protein failed to protect chickens from H7N9 virus infection.
Journal of Virology | 2015
Zhiguang Ran; Huigang Shen; Yuekun Lang; Elizabeth A. Kolb; Nuri Turan; Laihua Zhu; Jingjiao Ma; Bhupinder Bawa; Qinfang Liu; Haixia Liu; Megan Quast; Gabriel Sexton; Florian Krammer; Ben M. Hause; Jane Christopher-Hennings; Eric A. Nelson; Juergen A. Richt; Feng Li; Wenjun Ma
ABSTRACT Influenza B virus (IBV) causes seasonal epidemics in humans. Although IBV has been isolated from seals, humans are considered the primary host and reservoir of this important pathogen. It is unclear whether other animal species can support the replication of IBV and serve as a reservoir. Swine are naturally infected with both influenza A and C viruses. To determine the susceptibility of pigs to IBV infection, we conducted a serological survey for U.S. Midwest domestic swine herds from 2010 to 2012. Results of this study showed that antibodies to IBVs were detected in 38.5% (20/52) of sampled farms, and 7.3% (41/560) of tested swine serum samples were positive for IBV antibodies. Furthermore, swine herds infected with porcine reproductive and respiratory syndrome virus (PRRSV) showed a higher prevalence of IBV antibodies in our 2014 survey. In addition, IBV was detected in 3 nasal swabs collected from PRRSV-seropositive pigs by real-time RT-PCR and sequencing. Finally, an experimental infection in pigs, via intranasal and intratracheal routes, was performed using one representative virus from each of the two genetically and antigenically distinct lineages of IBVs: B/Brisbane/60/2008 (Victoria lineage) and B/Yamagata/16/1988 (Yamagata lineage). Pigs developed influenza-like symptoms and lung lesions, and they seroconverted after virus inoculation. Pigs infected with B/Brisbane/60/2008 virus successfully transmitted the virus to sentinel animals. Taken together, our data demonstrate that pigs are susceptible to IBV infection; therefore, they warrant further surveillance and investigation of swine as a potential host for human IBV. IMPORTANCE IBV is an important human pathogen, but its ability to infect other species, for example, pigs, is not well understood. We showed serological evidence that antibodies to two genetically and antigenically distinct lineages of IBVs were present among domestic pigs, especially in swine herds previously infected with PRRSV, an immunosuppressive virus. IBV was detected in 3 nasal swabs from PRRSV-seropositive pigs by real-time reverse transcription-PCR and sequencing. Moreover, both lineages of IBV were able to infect pigs under experimental conditions, with transmissibility of influenza B/Victoria lineage virus among pigs being observed. Our results demonstrate that pigs are susceptible to IBV infections, indicating that IBV is a swine pathogen, and swine may serve as a natural reservoir of IBVs. In addition, pigs may serve as a model to study the mechanisms of transmission and pathogenesis of IBVs.
Javma-journal of The American Veterinary Medical Association | 2015
Daniel U. Thomson; Guy H. Loneragan; Jamie N. Henningson; Steve Ensley; Bhupinder Bawa
Ensuring appropriate animal welfare is a high priority for the beef industry, and poorly defined abnormalities in the mobility of cattle at abattoirs have gained considerable attention recently. During the summer of 2013, abattoirs throughout the United States reported concerns about nonambulatory or slow and difficult to move cattle and cattle that sloughed hoof walls. This report describes various cattle that developed these mobility problems soon after arrival at an abattoir. Affected cattle had various clinical signs including tachypnea with an abdominal component to breathing, lameness, and reluctance to move. Some cattle sloughed 1 or more hoof walls while in lairage pens and were euthanized. Other cattle recovered after being rested overnight. Affected cattle had serum lactate concentration and creatine kinase activity increased from reference ranges. Histologic findings included diffuse necrosis of the epidermal laminae with degenerate collagen and perivascular infiltration of neutrophils in the underlying deep dermis, and were similar for digits that had and had not sloughed the hoof wall. With the exception of the sloughed hoof walls, the clinical signs and serum biochemical abnormalities observed in affected cattle were similar to those observed in pigs with fatigued pig syndrome, and we propose that fatigued cattle syndrome be used to describe such cattle. Although anecdotal evidence generated concern that cattle fed the β-adrenergic receptor agonist zilpaterol hydrochloride were at greater risk of developing mobility problems, compared with cattle not fed zilpaterol, this condition is likely multifactorial. Strategies to prevent this condition are needed to protect the welfare of cattle.
Scientific Reports | 2016
Bonto Faburay; William C. Wilson; Natasha N. Gaudreault; A. Sally Davis; Vinay Shivanna; Bhupinder Bawa; Sun Young Sunwoo; Wenjun Ma; Barbara S. Drolet; I. V. Morozov; D. Scott McVey; Juergen A. Richt
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.
Neurotoxicity Research | 2008
Bhupinder Bawa; Louise C. Abbott
Cav 2.1 voltage-gated calcium channels (VGCC) are highly expressed by cerebellar neurons, and their dysfunction is linked to human disorders including familial hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ataxia type 6. Altered calcium homeostasis, due to dysfunctional Cav 2.1 VGCC can severely affect mitochondrial function, eventually leading to neuronal cell death. We study leaner and tottering mice, which carry autosomal recessive mutations in the gene coding for the α1A pore-forming subunit of Cav 2.1 VGCC. Both leaner and tottering mice exhibit cerebellar ataxia and epilepsy. Excessive leaner cerebellar granule cell (CGC) death starts soon after postnatal day 10, but it is not known whether the degree of CGC cell death observed in adult leaner mice is significantly different from wild type mice. We used Fluoro-Jade and TUNEL staining to quantify apoptotic cell death in leaner and wild type CGC. We investigated calcium homeostasis, mitochondrial function and generation of reactive oxygen species (ROS) in isolated CGC, using indicator dyes Fura-2AM, TMRM and CMH2DCFDA, respectively. We observed a small but significant increase in number of apoptotic adult leaner CGC. Calcium homeostasis and mitochondrial function also were altered in leaner CGC. However, no significant differences in ROS levels were observed. It is possible that CGC death in leaner mice may be related to mitochondrial dysfunction but may not be directly related to decreased basal intracellular calcium.