Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bi-Hua Tan is active.

Publication


Featured researches published by Bi-Hua Tan.


Heart Rhythm | 2010

Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K(ATP) channel Kir6.1 as a pathogenic substrate for J-wave syndromes.

Argelia Medeiros-Domingo; Bi-Hua Tan; Lia Crotti; David J. Tester; Lee L. Eckhardt; Alessandra Cuoretti; Stacie Kroboth; Chunhua Song; Qing Zhou; Doug Kopp; Peter J. Schwartz; Jonathan C. Makielski; Michael J. Ackerman

BACKGROUND J-wave syndromes have emerged conceptually to encompass the pleiotropic expression of J-point abnormalities including Brugada syndrome (BrS) and early repolarization syndrome (ERS). KCNJ8, which encodes the cardiac K(ATP) Kir6.1 channel, recently has been implicated in ERS following identification of the functionally uncharacterized missense mutation S422L. OBJECTIVE The purpose of this study was to further explore KCNJ8 as a novel susceptibility gene for J-wave syndromes. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open reading frame/splice site mutational analysis of KCNJ8 was performed in 101 unrelated patients with J-wave syndromes, including 87 with BrS and 14 with ERS. Six hundred healthy individuals were examined to assess the allelic frequency for all variants detected. KCNJ8 mutation(s) was engineered by site-directed mutagenesis and coexpressed heterologously with SUR2A in COS-1 cells. Ion currents were recorded using whole-cell configuration of the patch-clamp technique. RESULTS One BrS case and one ERS case hosted the identical missense mutation S422L, which was reported previously. KCNJ8-S422L involves a highly conserved residue and was absent in 1,200 reference alleles. Both cases were negative for mutations in all known BrS and ERS susceptibility genes. K(ATP) current of the Kir6.1-S422L mutation was increased significantly over the voltage range from 0 to 40 mV compared to Kir6.1-WT channels (n = 16-21; P <.05). CONCLUSION These findings further implicate KCNJ8 as a novel J-wave syndrome susceptibility gene and a marked gain of function in the cardiac K(ATP) Kir6.1 channel secondary to KCNJ8-S422L as a novel pathogenic mechanism for the phenotypic expression of both BrS and ERS.


Heart Rhythm | 2010

Sudden Infant Death Syndrome-Associated Mutations in the Sodium Channel Beta Subunits

Bi-Hua Tan; Kavitha N. Pundi; David W. Van Norstrand; Carmen R. Valdivia; David J. Tester; Argelia Medeiros-Domingo; Jonathan C. Makielski; Michael J. Ackerman

BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) cases may stem from potentially lethal cardiac channelopathies, with approximately half of channelopathic SIDS involving the Na(V)1.5 cardiac sodium channel. Recently, Na(V) beta subunits have been implicated in various cardiac arrhythmias. Thus, the 4 genes encoding Na(V) beta subunits represent plausible candidate genes for SIDS. OBJECTIVE This study sought to determine the spectrum, prevalence, and functional consequences of sodium channel beta-subunit mutations in a SIDS cohort. METHODS In this institutional review board-approved study, mutational analysis of the 4 beta-subunit genes, SCN1B to 4B, was performed using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing of DNA derived from 292 SIDS cases. Engineered mutations were coexpressed with SCN5A in HEK 293 cells and were whole-cell patch clamped. One of the putative SIDS-associated mutations was similarly studied in adenovirally transduced adult rat ventricular myocytes. RESULTS Three rare (absent in 200 to 800 reference alleles) missense mutations (beta3-V36M, beta3-V54G, and beta4-S206L) were identified in 3 of 292 SIDS cases. Compared with SCN5A+beta3-WT, beta3-V36M significantly decreased peak I(Na) and increased late I(Na), whereas beta3-V54G resulted in a marked loss of function. beta4-S206L accentuated late I(Na) and positively shifted the midpoint of inactivation compared with SCN5A+beta4-WT. In native cardiomyocytes, beta4-S206L accentuated late I(Na) and increased the ventricular action potential duration compared with beta4-WT. CONCLUSION This study provides the first molecular and functional evidence to implicate the Na(V) beta subunits in SIDS pathogenesis. Altered Na(V)1.5 sodium channel function due to beta-subunit mutations may account for the molecular pathogenic mechanism underlying approximately 1% of SIDS cases.


Circulation-arrhythmia and Electrophysiology | 2009

α1-Syntrophin Mutations Identified in Sudden Infant Death Syndrome Cause an Increase in Late Cardiac Sodium Current

Jianding Cheng; David W. Van Norstrand; Argelia Medeiros-Domingo; Carmen R. Valdivia; Bi-Hua Tan; Bin Ye; Stacie Kroboth; Matteo Vatta; David J. Tester; Craig T. January; Jonathan C. Makielski; Michael J. Ackerman

Background—Sudden infant death syndrome (SIDS) is a leading cause of death during the first 6 months after birth. About 5% to 10% of SIDS may stem from cardiac channelopathies such as long-QT syndrome. We recently implicated mutations in &agr;1-syntrophin (SNTA1) as a novel cause of long-QT syndrome, whereby mutant SNTA1 released inhibition of associated neuronal nitric oxide synthase by the plasma membrane Ca-ATPase PMCA4b, causing increased peak and late sodium current (INa) via S-nitrosylation of the cardiac sodium channel. This study determined the prevalence and functional properties of SIDS-associated SNTA1 mutations. Methods and Results—Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing of SNTA1s open reading frame, 6 rare (absent in 800 reference alleles) missense mutations (G54R, P56S, T262P, S287R, T372M, and G460S) were identified in 8 (≈3%) of 292 SIDS cases. These mutations were engineered using polymerase chain reaction–based overlap extension and were coexpressed heterologously with SCN5A, neuronal nitric oxide synthase, and PMCA4b in HEK293 cells. INa was recorded using the whole-cell method. A significant 1.4- to 1.5-fold increase in peak INa and 2.3- to 2.7-fold increase in late INa compared with controls was evident for S287R-, T372M-, and G460S-SNTA1 and was reversed by a neuronal nitric oxide synthase inhibitor. These 3 mutations also caused a significant depolarizing shift in channel inactivation, thereby increasing the overlap of the activation and inactivation curves to increase window current. Conclusions—Abnormal biophysical phenotypes implicate mutations in SNTA1 as a novel pathogenic mechanism for the subset of channelopathic SIDS. Functional studies are essential to distinguish pathogenic perturbations in channel interacting proteins such as &agr;1-syntrophin from similarly rare but innocuous ones.


Circulation-cardiovascular Genetics | 2011

Loss-of-Function Mutations in the KCNJ8-Encoded Kir6.1 KATP Channel and Sudden Infant Death Syndrome

David J. Tester; Bi-Hua Tan; Argelia Medeiros-Domingo; Chunhua Song; Jonathan C. Makielski; Michael J. Ackerman

Background— Approximately 10% of sudden infant death syndrome (SIDS) may stem from cardiac channelopathies. The KCNJ8-encoded Kir6.1 (KATP) channel critically regulates vascular tone and cardiac adaptive response to systemic metabolic stressors, including sepsis. KCNJ8-deficient mice are prone to premature sudden death, particularly with infection. We determined the spectrum, prevalence, and function of KCNJ8 mutations in a large SIDS cohort. Methods and Results— Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive open reading frame/splice-site mutational analysis of KCNJ8 was performed on genomic DNA isolated from necropsy tissue on 292 unrelated SIDS cases (178 males, 204 white; age, 2.9±1.9 months). KCNJ8 mutations were coexpressed heterologously with SUR2A in COS-1 cells and characterized using whole-cell patch-clamp. Two novel KCNJ8 mutations were identified. A 5-month-old white male had an in-frame deletion (E332del) and a 2-month-old black female had a missense mutation (V346I). Both mutations localized to Kir6.1s C-terminus, involved conserved residues and were absent in 400 and 200 ethnic-matched reference alleles respectively. Both cases were negative for mutations in established channelopathic genes. Compared with WT, the pinacidil-activated KATP current was decreased 45% to 68% for Kir6.1-E332del and 40% to 57% for V346I between −20 mV and 40 mV. Conclusions— Molecular and functional evidence implicated loss-of-function KCNJ8 mutations as a novel pathogenic mechanism in SIDS, possibly by predisposition of a maladaptive cardiac response to systemic metabolic stressors akin to the mouse models of KCNJ8 deficiency.


Circulation-arrhythmia and Electrophysiology | 2009

Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current.

Jianding Cheng; Van Norstrand Dw; Argelia Medeiros-Domingo; Carmen R. Valdivia; Bi-Hua Tan; Bin Ye; Stacie Kroboth; Vatta M; David J. Tester; Craig T. January; Jonathan C. Makielski; Michael J. Ackerman

Background—Sudden infant death syndrome (SIDS) is a leading cause of death during the first 6 months after birth. About 5% to 10% of SIDS may stem from cardiac channelopathies such as long-QT syndrome. We recently implicated mutations in &agr;1-syntrophin (SNTA1) as a novel cause of long-QT syndrome, whereby mutant SNTA1 released inhibition of associated neuronal nitric oxide synthase by the plasma membrane Ca-ATPase PMCA4b, causing increased peak and late sodium current (INa) via S-nitrosylation of the cardiac sodium channel. This study determined the prevalence and functional properties of SIDS-associated SNTA1 mutations. Methods and Results—Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing of SNTA1s open reading frame, 6 rare (absent in 800 reference alleles) missense mutations (G54R, P56S, T262P, S287R, T372M, and G460S) were identified in 8 (≈3%) of 292 SIDS cases. These mutations were engineered using polymerase chain reaction–based overlap extension and were coexpressed heterologously with SCN5A, neuronal nitric oxide synthase, and PMCA4b in HEK293 cells. INa was recorded using the whole-cell method. A significant 1.4- to 1.5-fold increase in peak INa and 2.3- to 2.7-fold increase in late INa compared with controls was evident for S287R-, T372M-, and G460S-SNTA1 and was reversed by a neuronal nitric oxide synthase inhibitor. These 3 mutations also caused a significant depolarizing shift in channel inactivation, thereby increasing the overlap of the activation and inactivation curves to increase window current. Conclusions—Abnormal biophysical phenotypes implicate mutations in SNTA1 as a novel pathogenic mechanism for the subset of channelopathic SIDS. Functional studies are essential to distinguish pathogenic perturbations in channel interacting proteins such as &agr;1-syntrophin from similarly rare but innocuous ones.


Blood | 2015

Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia

Chunhua Song; Chandrika Gowda; Xiaokang Pan; Yali Ding; Yongqing Tong; Bi-Hua Tan; Haijun Wang; Sunil Muthusami; Zheng Ge; Mansi Sachdev; Shantu Amin; Dhimant Desai; Krishne Gowda; Raghavendra Gowda; Gavin P. Robertson; Hilde Schjerven; Markus Müschen; Kimberly J. Payne; Sinisa Dovat

Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.


Journal of Biological Chemistry | 2013

The Interaction of Caveolin 3 Protein with the Potassium Inward Rectifier Channel Kir2.1 PHYSIOLOGY AND PATHOLOGY RELATED TO LONG QT SYNDROME 9 (LQT9)

Ravi Vaidyanathan; Amanda L. Vega; Chunhua Song; Qing Zhou; Bi-Hua Tan; Stuart Berger; Jonathan C. Makielski; Lee L. Eckhardt

Background: Regulation of Kir2.1 by WT caveolin 3 and LQT9-causing mutants of caveolin3 is unknown. Results: WT caveolin 3 and mutants of caveolin 3 associate with Kir2.1. Caveolin 3 mutants reduce Kir2.1 current density. Surface expression of Kir2.1 is decreased by caveolin 3 mutations. Conclusion: Caveolin 3 mutations affect Kir2.1 current density by decreasing cell surface expression of Kir2.1. Significance: Kir2.1 loss of function may contribute to the mechanism of arrhythmia generation in caveolin 3-mediated LQT9. Mutations in CAV3 cause LQT syndrome 9 (LQT9). A previously reported LQT9 patient had prominent U waves on ECG, a feature that has been correlated with Kir2.1 loss of function. Our objective was to determine whether caveolin 3 (Cav3) associates with Kir2.1 and whether LQT9-associated CAV3 mutations affect the biophysical properties of Kir2.1. Kir2.1 current (IK1) density was measured using the whole-cell voltage clamp technique. WT-Cav3 did not affect IK1. However, F97C-Cav3 and T78M-Cav3 decreased IK1 density significantly by ∼60%, and P104L-Cav3 decreased IK1 density significantly by ∼30% at −60 mV. Immunostained rat heart cryosections and HEK293 cells cotransfected with Kir2.1 and WT-Cav3 both demonstrated colocalization of Kir2.1 and WT-Cav3 by confocal imaging. Cav3 coimmunoprecipitated with Kir2.1 in human ventricular myocytes and in heterologous expression systems. Additionally, FRET efficiency was highly specific, with a molecular distance of 5.6 ± 0.4 nm, indicating close protein location. Colocalization experiments found that Cav3 and Kir2.1 accumulated in the Golgi compartment. On-cell Western blot analysis showed decreased Kir2.1 cell surface expression by 60% when expressed with F97C-Cav3 and by 20% when expressed with P104L-Cav3 compared with WT-Cav3. This is the first report of an association between Cav3 and Kir2.1. The Cav3 mutations F97C-Cav3, P104L-Cav3, and T78M-Cav3 decreased IK1 density significantly. This effect was related to a reduced cell surface expression of Kir2.1. Kir2.1 loss of function is additive to the increase described previously in late INa, prolonging repolarization and leading to arrhythmia generation in Cav3-mediated LQT9.


American Journal of Forensic Medicine and Pathology | 2011

Sudden unexplained nocturnal death syndrome in Southern China: an epidemiological survey and SCN5A gene screening.

Jianding Cheng; Jonathan C. Makielski; Ping Yuan; Nian-Qing Shi; Feng Zhou; Bin Ye; Bi-Hua Tan; Stacie Kroboth

Abstract Based on autopsy data collected in Southern China from 2001–2006, 975 cases of sudden unexplained nocturnal death syndrome (SUNDS) were surveyed. Genetic screening of SCN5A gene encoding the voltage dependent cardiac sodium channel was performed in 74 SUNDS cases. The annual occurrence rate of SUNDS in the area was estimated to be about 1 per 100,000 people. About 80.6% of deaths occurred between the ages of 21 to 40 years and the case number peaked at age 30 years. In 75.4% of cases with witnesses, victims died asleep between 11 PM and 4 AM and they showed predominantly abrupt respiratory distress shortly preceding death. The monthly distribution of emergency fever cases in the area during the same period was positively correlated to that of SUNDS cases (rs = 0.611, P = 0.035). Four polymorphisms in SCN5A were identified in both SUNDS and control groups. Compared with controls, the allele frequency of C5457 and C3666 + 69 were significant higher in SUNDS (P < 0.005) while the genotypes of both 5457CC (P = 0.012, OR = 2.0, 95% CI = 1.3–3.2) and 3666+69CC (P = 0.004, OR = 2.1, 95% CI = 1.3–3.3) in SUNDS cases were significantly higher. This is the first report of an epidemiological survey and SCN5A gene screening in SUNDS in the Han population of China. The genotypes of 5457CC and 3666+69CC in SCN5A gene may be Chinese SUNDS susceptible polymorphisms.


Oncotarget | 2015

MiR-215, an activator of the CTNNBIP1/β-catenin pathway, is a marker of poor prognosis in human glioma

Yongqing Tong; Bei Liu; Hongyun Zheng; Jian T Gu; Hang Liu; Feng Li; Bi-Hua Tan; Melanie Hartman; Chunhua Song; Yan Li

MicroRNA-215 (miR-215) promotes tumor growth in various human malignancies. However, its role has not yet been determined in human glioma. Here, we found that levels of miR-215 were higher in glioma tissues than in corresponding non-neoplastic brain tissue. High miR-215 expression was correlated with higher World Health Organization (WHO) grades and shorter overall survival. Multivariate and univariate analysis indicated that miR-215 expression was an independent prognostic factor. We also found that TGF-beta1, phosphorylated beta-catenin, alpha-SMA, and fibronectin were increased in glioma tissues. Additionally, CTNNBIP1, a direct target of miR-215, was decreased in glioma compared to adjacent normal tissue. These data indicate that miR-215 activates Wnt/β-catenin signaling by increasing β-catenin phosphorylation, α-SMA expression, and fibronectin expression. It promotes TGF-β1-induced oncogenesis by suppressing CTNNBIP1 in glioma. In summary, miR-215 is overexpressed in human glioma, is involved in TGF-β1-induced oncogenesis, and can be used as a marker of poor prognosis in glioma patients.


Journal of Biological Chemistry | 2016

Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia

Haijun Wang; Chunhua Song; Yali Ding; Xiaokang Pan; Zheng Ge; Bi-Hua Tan; Chandrika Gowda; Mansi Sachdev; Sunil Muthusami; Hongsheng Ouyang; Liangxue Lai; Olivia L. Francis; Christopher L. Morris; Hisham Abdel-Azim; Glenn Dorsam; Meixian Xiang; Kimberly J. Payne; Sinisa Dovat

Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL.

Collaboration


Dive into the Bi-Hua Tan's collaboration.

Top Co-Authors

Avatar

Jonathan C. Makielski

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chunhua Song

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen R. Valdivia

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sinisa Dovat

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Stacie Kroboth

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Ye

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge