Bi-min Zhang Newby
University of Akron
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bi-min Zhang Newby.
Science | 1995
Bi-min Zhang Newby; Manoj K. Chaudhury; H. R. Brown
The adhesion strengths of a viscoelastic adhesive were measured on various substrates that were prepared by grafting silanes bearing organic functional groups to silicon wafers. Conventional theories predict that adhesion should be proportional to the surface free energy of the substrate; but adhesion on a fluorocarbon surface was significantly greater than on some of the hydrocarbon surfaces, although the fluorocarbon surface has the lowest surface free energy. This result could be explained by invoking a model of adhesion based on the slippage of the adhesive at the interface.
Journal of the American Chemical Society | 2008
Yangjun Cai; Bi-min Zhang Newby
We have developed a simple Marangoni flow-induced method for self-assembling nanoparticles (NPs) into both hexagonal and stripelike patterns. First, a NPs/ethanol suspension was spread on a slightly nonwettable and a wettable silicon oxide substrate. The Marangoni flow, induced by simultaneous evaporation of ethanol and condensation of water, leads to the formation of the corresponding hexagonal distributed circular NP rings and dotted stripes. The inter-ring spacing and ring size of the hexagonal patterns can be tuned by varying the relative humidity of the N2 stream blown over the slightly nonwettable substrate. Hexagonal patterns of circular NP patches can also be fabricated by lowering the evaporation of the condensed water droplets. On the wettable substrate, complex patterns result when the humidity of the N2 stream changes.
Colloids and Surfaces B: Biointerfaces | 2011
Hua Wang; Maysam Sodagari; Yajie Chen; Xin He; Bi-min Zhang Newby; Lu-Kwang Ju
Bacterial biofilm can have significant effects on the behaviors and/or performance of natural and man-made systems. Understanding the factors governing initial bacterial attachment is critical to biofilm management. In this study, the initial attachment of three bacteria, Pseudomonas aeruginosa, Escherichia coli and Pseudomonas putida, on two substrates, glass and octadecyltrichlorosilane (OTS) modified glass, was examined in flow chambers. The flow chambers were designed and operated to mimic slow moving water bodies and minimize the gravitational settlement of cells. The hydrophobicity of bacterial surface was evaluated by partitioning of cells to the water-hexadecane interface and the liquid contact angles on cell layers collected on filter papers. On the more hydrophilic glass surface, the attachment trend was found to be E. coli>P. putida>P. aeruginosa, while the opposite trend was observed on the hydrophobic, OTS modified surface. The attachment trend on glass could be explained by the magnitude of the negative interaction energy at secondary minima, as predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The much higher attachments of P. aeruginosa and P. putida on the OTS-modified substrate, on the other hand, suggested that these cells could overcome the energy barrier between the primary and secondary minima of interaction energy to become attached to the primary minimum. The extent of primary-minimum attachment appeared to correlate with the scale of the energy barrier, with higher attachments in the bacteria-substrate combinations of lower energy barriers. The study generated important insights into the effects of cell and substrate surface properties on initial bacterial attachment.
Journal of Colloid and Interface Science | 2013
Suchata Kirdponpattara; Muenduen Phisalaphong; Bi-min Zhang Newby
The Washburn capillary rise (WCR) technique has been widely utilized for determining contact angles of powders or porous materials; however, there are concerns regarding powder size and powder packing, especially for materials that exhibit large contact angle hysteresis. In this paper, some of these concerns were addressed. Due to the large water contact angle hysteresis on flat nylon 6/6 films, these films were ground into powders of different sizes and then used as model packing materials. The powders were packed in glass tubes to result in various packing structures that affected the penetration (i.e. advancing) rate of the test liquids. While all advancing contact angles obtained from WCR were found to be overestimated, more reasonable values were resulted when relatively large powders (e.g. 500-2000 μm) were used to pack the tubes. With larger powders, the packing contained bigger voids and consequently lead to slower penetration rates of the liquids, hence a relatively smaller advancing contact angle. The smaller advancing contact angle obtained from the slower advancing rate was also observed by using the sessile drop method. To verify the applicability of using large powders (500-2000 μm) for contact angle determination by using WCR, the advancing water contact angles of a bacterial cellulose/alginate composite sponge (BCA) with and without UV/ozone treatment were measured. The results showed that by using relatively large powders, WCR could be applied to obtain a reasonable advancing contact angle and assess the wettability change of complex porous materials.
Acta Biomaterialia | 2012
Nikul G. Patel; John Cavicchia; Ge Zhang; Bi-min Zhang Newby
The ability to harvest cell sheets grown on thermoresponsive polymers, such as poly(N-isopropylacrylamide) (pNIPAAm), has been widely studied for use in tissue engineering applications. pNIPAAm is of special interest because of the phase change that it undergoes in a physiologically relevant temperature range. Two primary approaches have been adopted to graft pNIPAAm chains covalently onto tissue culture polystyrene dishes: electron beam irradiation and plasma polymerization. These approaches often involve non-easily accessible (e.g. e-beam) facilities and complicated procedures that have hindered most tissue culture laboratories in adopting this technology for their specific applications. In this study, we developed a simple and cost-effective approach to create thermoresponsive surfaces using commercially available pNIPAAm. Using a simple spin-coating technique, thermoresponsive thin films were deposited on glass slides or silicon wafers using pNIPAAm blended with a small amount of 3-aminopropyltriethoxysilane (APTES), which enhances the retention of pNIPAAm on the surface. We found that the thermoresponsive films created using our method support cell attachment and proliferation without additional adhesive proteins as well as cell sheet detachment within minutes.
Langmuir | 2008
Yangjun Cai; Bi-min Zhang Newby
A simple technique for patterning proteins utilizing dewetted polystyrene (PS) droplets is demonstrated. A polystyrene thin film was spin coated on a poly(ethylene glycol) (PEG) silane-modified surface. As the PS film dewets from the surface, upon annealing, to form droplets, the PEG-silane-modified surface is exposed, which retains its capability to resist protein adsorption, and the PS droplets allow the selective adsorption of proteins. In contrast to the undewetted flat PS film, the droplet surface had a greater amount of adsorbed proteins. Atomic force microscopy scans reveal that the roughness of the droplet surface is higher, and a multilayer of proteins results on the droplet surface. Moreover, micro- and nanoscale droplet patterns can easily be achieved by tuning the thickness of PS thin films. Because dewetting approaches for generating ordered dewetting droplets have been successfully generated by others, those approaches could be easily combined with this technique to fabricate ordered protein patterns.
Colloids and Surfaces B: Biointerfaces | 2013
Maysam Sodagari; Hua Wang; Bi-min Zhang Newby; Lu-Kwang Ju
Bacterial attachment on solid surfaces has various implications in environmental, industrial and medical applications. In this study, the effects of rhamnolipid biosurfactants on initial attachment of bacteria on hydrophilic glass and hydrophobic octadecyltrichlorosilane (OTS) modified glass were evaluated under continuous-flow conditions. The bacteria investigated were three Gram-negative species Pseudomonas aeruginosa, Pseudomonas putida, and Escherichia coli, and two Gram-positive species Staphylcoccus epidermidis and Bacillus subtilis. Rhamnolipids, at 10 and 200 mg/l, significantly reduced the attachment of all but S. epidermidis on both glass and OTS-modified glass. For S. epidermidis rhamnolipids reduced the attachment on OTS-modified glass but not on glass. Studies were further done to identify the mechanism(s) by which rhamnolipids reduced the cell attachment. The following potential properties of rhamnolipids were investigated: inhibition of microbial growth, change of cell surface hydrophobicity, easier detachment of cells already attached to substratum, and modification of substratum surface properties. Results showed that rhamnolipids were ineffective for the latter two effects. Rhamnolipids, up to 200mg/l, inhibited the growth of B. subtilis, S. epidermidis and P. aeruginosa PAO1 but not the growth of E. coli, P. putida and P. aeruginosa E0340. Also, rhamnolipids tended to increase the hydrophobicity of P. aeruginosa PAO1 and E. coli, decrease the hydrophobicity of P. putida and S. epidermidis, and have no clear effect on the hydrophobicity of B. subtillis. These trends however did not correlate with the observed trend of cell attachment reduction. The responsible mechanism(s) remained unknown.
Langmuir | 2009
Yangjun Cai; Bi-min Zhang Newby
In this article, we report the development of a novel, simple, and cost-effective method for fabricating porous polymer films with controllable interpore distances, pore sizes, and arrangements using water droplets induced by Marangoni flow as templates. First, a spread-thin ethanol film on a partially water-wettable substrate is exposed to a humid airflow, facilitating the evaporation and recession of the ethanol film. Meanwhile, water in the airflow condenses on the ethanol film and accumulates near the receding contact line, which induces the formation of water fingers at the receding contact line and, finally, ordered arrays of water droplets after detachment. The formation of the hexagonal and square arrays of water droplets is due to the pinning and sliding of the water fingers on the silicone oxide (SiOx) and silicon (Si) substrates, respectively. By varying the thickness of the ethanol film spread on the Si substrate, the sliding velocity of water fingers can be tuned, subsequently leading to the fabrication of other arrangements. The interdroplet distance and droplet size can be dependently controlled by tuning the humidity of the airflow. The ordered arrays of water droplets on the substrate are then utilized to fabricate porous polymer films by dip-coating the substrate with a polystyrene solution. Films with hexagonal and square (and other arrangements) arrays of pores are fabricated on the silicon oxide (SiOx) and silicon (Si) substrates, respectively. The pore size can also be independently tuned by further condensation or evaporation of formed water droplets, leading to porous polymer films with both close- and non-close-packed arrays of pores. The ordered porous polymer films can be further used as templates for fabricating metal post patterns.
Journal of Chemical Physics | 2006
Sung-Hwan Choi; Bi-min Zhang Newby
The effects of dynamic contact angle (thetad), between a substrate and the melt of a dewetting polymer thin film, on the evolution of rim instabilities of dewetting holes were reported. Various thetads were achieved by covering SiOx surfaces with different coverage of octadecyltrichlorosilane. On each surface, the morphology of the dewetting holes was examined in detail as the hole grew to a certain size. Rim instabilities, in terms of undulations in both r and z directions, became more pronounced as thetad increased, under which condition, narrower and higher rims were also observed. Experimentally, atomic force microscopic scans of the rim were used to obtain the rim profile, which was predicted using thetad. The predicted rim profile was used, in combination with the analysis of Rayleigh instability of a cylindrical fluid, to interpret the rim instability. The model captures the basic trend of the rim instability dependency on thetad. The study demonstrates the importance of the substrate properties on the rim instability and the destabilization of polymer thin films during hole growth.
Biofouling | 2005
Haroon Haque; Teresa J. Cutright; Bi-min Zhang Newby
The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l−1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41 – 52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.