Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bianca Fontanella is active.

Publication


Featured researches published by Bianca Fontanella.


Applied and Environmental Microbiology | 2000

Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus.

Gianna Palmieri; Paola Giardina; Carmen Bianco; Bianca Fontanella; Giovanni Sannia

ABSTRACT Pleurotus ostreatus is a white rot basidiomycete that produces several extracellular laccase isoenzymes, including phenol oxidase A1b (POXA1b), POXA2, and POXC. POXC was the most abundant isoenzyme produced under all of the growth conditions examined in this study. Copper was the most efficient inducer of laccase activity among the putative inducers tested. The amounts of all of the previously described laccase isoenzymes increased substantially in copper-supplemented cultures. Under these conditions expression of POX isoenzymes was regulated at the level of gene transcription. It is worth noting that poxa1b mRNA was the most abundant induced transcript at all of the growth times analyzed, and the amount of this mRNA increased until day 7. The discrepancy between thepoxa1b transcript and protein amounts can be explained by the presence of a high level of the protein in P. ostreatuscellular extract, which indicated that the POXA1b isoenzyme could be inefficiently secreted and/or that its physiological activity could occur inside the cell or on the cell wall. Moreover, the POXA1b isoenzyme behaved uniquely, as its activity was maximal on the second day of growth and then decreased. An analysis performed with protease inhibitors revealed that the loss of extracellular POXA1b activity could have been due to the presence of specific proteases secreted into the copper-containing culture medium that affected the extracellular POXA1b isoenzyme.


BMC Evolutionary Biology | 2008

Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties

Marco Sardiello; Stefano Cairo; Bianca Fontanella; Andrea Ballabio; Germana Meroni

BackgroundThe TRIM family is composed of multi-domain proteins that display the Tripartite Motif (RING, B-box and Coiled-coil) that can be associated with a C-terminal domain. TRIM genes are involved in ubiquitylation and are implicated in a variety of human pathologies, from Mendelian inherited disorders to cancer, and are also involved in cellular response to viral infection.ResultsHere we defined the entire human TRIM family and also identified the TRIM sets of other vertebrate (mouse, rat, dog, cow, chicken, tetraodon, and zebrafish) and invertebrate species (fruitfly, worm, and ciona). By means of comparative analyses we found that, after assembly of the tripartite motif in an early metazoan ancestor, few types of C-terminal domains have been associated with this module during evolution and that an important increase in TRIM number occurred in vertebrate species concomitantly with the addition of the SPRY domain. We showed that the human TRIM family is split into two groups that differ in domain structure, genomic organization and evolutionary properties. Group 1 members present a variety of C-terminal domains, are highly conserved among vertebrate species, and are represented in invertebrates. Conversely, group 2 is absent in invertebrates, is characterized by the presence of a C-terminal SPRY domain and presents unique sets of genes in each mammal examined. The generation of independent sets of group 2 genes is also evident in the other vertebrate species. Comparing the murine and human TRIM sets, we found that group 1 and 2 genes evolve at different speeds and are subject to different selective pressures.ConclusionWe found that the TRIM family is composed of two groups of genes with distinct evolutionary properties. Group 2 is younger, highly dynamic, and might act as a reservoir to develop novel TRIM functions. Since some group 2 genes are implicated in innate immune response, their evolutionary features may account for species-specific battles against viral infection.


American Journal of Human Genetics | 2006

A Mutation of β-Actin That Alters Depolymerization Dynamics Is Associated with Autosomal Dominant Developmental Malformations, Deafness, and Dystonia

Vincent Procaccio; Gloria Salazar; Shoichiro Ono; Melanie L. Styers; Marla Gearing; Antonio Davila; Richard Jimenez; Jorge L. Juncos; Claire-Anne Gutekunst; Germana Meroni; Bianca Fontanella; Estelle Sontag; Jean Marie Sontag; Victor Faundez; Bruce H. Wainer

Actin, one of the major filamentous cytoskeletal molecules, is involved in a variety of cellular functions. Whereas an association between muscle actin mutations and skeletal and cardiac myopathies has been well documented, reports of human disease arising from mutations of nonmuscle actin genes have been rare. We have identified a missense point mutation in the gene coding for beta -actin that results in an arginine-to-tryptophan substitution at position 183. The disease phenotype includes developmental midline malformations, sensory hearing loss, and a delayed-onset generalized dystonia syndrome in monozygotic twins. Cellular studies of a lymphoblastoid cell line obtained from an affected patient demonstrated morphological abnormalities of the actin cytoskeleton and altered actin depolymerization dynamics in response to latrunculin A, an actin monomer-sequestering drug. Resistance to latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggest that mutations in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurological abnormalities such as dystonia.


BMC Cell Biology | 2004

Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules.

Caterina Berti; Bianca Fontanella; Rosa Ferrentino; Germana Meroni

BackgroundOpitz G/BBB syndrome is a genetic disorder characterized by developmental midline abnormalities, such as hypertelorism, cleft palate, and hypospadias. The gene responsible for the X-linked form of this disease, MID1, encodes a TRIM/RBCC protein that is anchored to the microtubules. The association of Mid1 with the cytoskeleton is regulated by dynamic phosphorylation, through the interaction with the α4 subunit of phosphatase 2A (PP2A). Mid1 acts as an E3 ubiquitin ligase, regulating PP2A degradation on microtubules.ResultsIn spite of these findings, the biological role exerted by the Opitz syndrome gene product is still unclear and the presence of other potential interacting moieties in the Mid1 structure prompted us to search for additional cellular partners. Through a yeast two-hybrid screening approach, we identified a novel gene, MIG12, whose protein product interacts with Mid1. We confirmed by immunoprecipitation that this interaction occurs in vivo and that it is mediated by the Mid1 coiled-coil domain. We found that Mig12 is mainly expressed in the neuroepithelial midline, urogenital apparatus, and digits during embryonic development. Transiently expressed Mig12 is found diffusely in both nucleus and cytoplasm, although it is enriched in the microtubule-organizing center region. Consistently with this, endogenous Mig12 protein is partially detected in the polymerized tubulin fraction after microtubule stabilization. When co-transfected with Mid1, Mig12 is massively recruited to thick filamentous structures composed of tubulin. These microtubule bundles are resistant to high doses of depolymerizing agents and are composed of acetylated tubulin, thus representing stabilized microtubule arrays.ConclusionsOur findings suggest that Mig12 co-operates with Mid1 to stabilize microtubules. Mid1-Mig12 complexes might be implicated in cellular processes that require microtubule stabilization, such as cell division and migration. Impairment in Mig12/Mid1-mediated microtubule dynamic regulation, during the development of embryonic midline, may cause the pathological signs observed in Opitz syndrome patients.


The Journal of Neuroscience | 2010

Lack of Mid1, the Mouse Ortholog of the Opitz Syndrome Gene, Causes Abnormal Development of the Anterior Cerebellar Vermis

Alessio Lancioni; Mariateresa Pizzo; Bianca Fontanella; Rosa Ferrentino; Luisa M. Napolitano; Elvira De Leonibus; Germana Meroni

Opitz G/BBB syndrome (OS) is a genetic disorder characterized by midline developmental defects. Male patients with the X-linked form of OS, caused by loss-of-function mutations in the MID1 gene, show high variability of the clinical signs. MID1 encodes a ubiquitin ligase that controls phosphatase 2A, but its role in the pathogenesis of the disease is still unclear. Here, we report a mouse line carrying a nonfunctional ortholog of the human MID1 gene, Mid1. Mid1-null mice show the brain anatomical defect observed in patients (i.e., hypoplasia of the anterior portion of the medial cerebellum, the vermis). We found that the presence of this defect correlates with motor coordination and procedural and nonassociative learning impairments. The defect is limited to the most anterior lobes of the vermis, the region of the developing cerebellum adjacent to the dorsal midbrain. Analyses at midgestation reveal that lack of Mid1 causes the shortening of the posterior dorsal midbrain, the rostralization of the midbrain/cerebellum boundary, and the downregulation of a key player in the development of this region, Fgf17. Thus, lack of Mid1 causes a misspecification of the midbrain/cerebellar boundary that results in an abnormal development of the most anterior cerebellar lobes. This animal model provides a tool for additional in vivo studies of the physiological and pathological role of the Mid1 gene and a system to investigate the development and function of anterior cerebellar domains.


Journal of Cellular Physiology | 2010

Role of Annexin A1 in Mouse Myoblast Cell Differentiation

Valentina Bizzarro; Bianca Fontanella; Silvia Franceschelli; Marinella Pirozzi; Helen Christian; Luca Parente; Antonello Petrella

Annexin A1 (ANXA1) is a calcium‐ and phospholipid‐binding protein involved in a broad range of cellular events. This study used molecular and microscopy approaches to explore the role of ANXA1 in mouse myoblast C2C12 cell differentiation. We report that ANXA1 expression increases during differentiation and that the down‐regulation of ANXA1 significantly inhibits the differentiation process. ANXA1 is expressed in vivo in both quiescent and activated satellite cells and is highly localized in the cells that migrate in the lumen of regenerating fibers after an acute injury. Endogenous ANXA1 co‐localizes with actin fibers at the protruding ends of undifferentiated but not differentiated cells suggesting a role of the protein in cell migration. Furthermore, ANXA1 neutralizing antibody reduces MyHC expression, decreases myotube formation and significantly inhibits cell migration. The data reported here suggest for the first time that ANXA1 plays a role in myogenic differentiation. J. Cell. Physiol. 224: 757–765, 2010.


Human Mutation | 2008

MID1 mutations in patients with X-linked Opitz G/BBB syndrome†

Bianca Fontanella; Giorgio Russolillo; Germana Meroni

Mutations in the MID1 gene are responsible for the X‐linked form of Opitz G/BBB syndrome (OS), a disorder that affects the development of midline structures. OS is characterized by hypertelorism, hypospadias, laryngo‐tracheo‐esophageal (LTE) abnormalities, and additional midline defects. Cardiac, anal, and neurological defects are also present. The expressivity of OS is highly variable, even within the same family. We reviewed all the MID1 mutations reported so far, in both familial and sporadic cases. The mutations are scattered along the entire length of the gene and consist of missense and nonsense mutations, insertions and deletions, either in‐frame or causing frameshifts, and deletions of either single exons or the entire MID1 coding region. The variety of described mutations and the lack of a strict genotype–phenotype correlation confirm the previous suggestion of the OS phenotype being caused by a loss‐of‐function mechanism. However, although a specific mutation cannot entirely account for the observed phenotype, we observed preferential association between some types of mutation and specific clinical manifestations, e.g., brain anatomical defects and truncating mutations. This may suggest that the pathogenetic mechanism underlying the OS phenotype is more complex and may vary among the affected organs. Hum Mutat 29(5), 584–594, 2008.


The International Journal of Biochemistry & Cell Biology | 2010

The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding.

Bianca Fontanella; Leila Birolo; Giuseppe Infusini; Claudia Cirulli; Liberato Marzullo; Pietro Pucci; Maria Caterina Turco; Alessandra Tosco

It has been recently hypothesized that BAG3 protein, a co-chaperone of Hsp70/Hsc70, is involved in the regulation of several cell processes, such as apoptosis, autophagy and cell motility. Following the identification of Hsc70/Hsp70, further BAG3 molecular partners such as PLC-gamma and HspB8 were likewise identified, thus contributing to the characterization of the mechanisms and the biological roles carried out by this versatile protein. By using a His-tagged BAG3 protein as bait, we fished out and identified the cytosolic chaperonin CCT, a new unreported BAG3 partner. The interaction between BAG3 and CCT was confirmed and characterized by co-immunoprecipitation experiments and surface plasmon resonance techniques. Furthermore, our analyses showed a slower CCT association and a faster dissociation with a truncated form of BAG3 containing the BAG domain, thus indicating that other protein regions are essential for a high-affinity interaction. ATP or ADP does not seem to significantly influence the chaperonin binding to BAG3 protein. On the other hand, our experiments showed that BAG3 silencing by small interfering RNA slowed down cell migration and influence the availability of correctly folded monomeric actin, analyzed by DNAse I binding assays and latrunculin A depolymerization studies. To our knowledge, this is the first report showing a biologically relevant interaction between the chaperonin CCT and BAG3 protein, thus suggesting interesting involvement in the folding processes regulated by CCT.


Mini-reviews in Medicinal Chemistry | 2011

Histone Deacetylase Inhibitors in the Treatment of Hematological Malignancies

Antonello Petrella; Bianca Fontanella; Carratù A; Bizzarro; Manuela Rodriquez; Luca Parente

Histone deacetylases (HDACs) play a central role in the epigenetic regulation of gene expression. Aberrant activity of HDACs has been found in several human cancers leading to the development of HDAC inhibitors (HDACi) as anti-tumors drugs. In fact, over the last years, a number of HDACi have been evaluated in clinical trials; these drugs have the common ability to hyperacetylate both histone and non-histone targets, resulting in a variety of effects on both cancer cells and immune responses. Clinical trials of HDACi conducted in solid tumors and hematological malignancies have shown a better clinical efficacy of these drugs in hematological malignancies. In this review, will be highlighted the mechanisms of action underlying the clinical responses obtained with these drugs and the doubts regarding the use of HDACi in cancer therapy.


Cancer Letters | 2010

Histone deacetylase inhibitor FR235222 sensitizes human prostate adenocarcinoma cells to apoptosis through up-regulation of Annexin A1

Cosimo Walter D’Acunto; Bianca Fontanella; Manuela Rodriquez; Maurizio Taddei; Luca Parente; Antonello Petrella

The reduction of Annexin A1 (ANXA1) expression, commonly associated with prostate cancer, could be due to elevated activity of histone deacetylases. We have investigated the mechanisms of apoptotic effects of FR235222 in LNCaP cell line and the role of ANXA1. We showed that treatment with FR235222 induced apoptosis through a caspase-dependent mechanism. FR235222 was able to increase the protein levels of ANXA1 at a transcriptional level. Finally, the inhibition of ANXA1 expression by siRNA leads to a partial reduction of FR235222-induced apoptosis. The results suggest that elevated activity of HDACs is responsible for the reduction of ANXA1, indicating that ANXA1 expression is a contributing factor to the proapoptotic effects in prostate cancer.

Collaboration


Dive into the Bianca Fontanella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Sannia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leila Birolo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge