Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bianca R. Mothé is active.

Publication


Featured researches published by Bianca R. Mothé.


Nature | 2000

Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia.

Todd M. Allen; David H. O'Connor; Peicheng Jing; John L. Dzuris; Bianca R. Mothé; Thorsten U. Vogel; Ed Dunphy; Max E. Liebl; Carol Emerson; Nancy A. Wilson; Kevin J. Kunstman; Xiaochi Wang; David B. Allison; Austin L. Hughes; Ronald C. Desrosiers; John D. Altman; Steven M. Wolinsky; Alessandro Sette; David I. Watkins

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are characterized by early peaks of viraemia that decline as strong cellular immune responses develop. Although it has been shown that virus-specific CD8-positive cytotoxic T lymphocytes (CTLs) exert selective pressure during HIV and SIV infection, the data have been controversial. Here we show that Tat-specific CD8-positive T-lymphocyte responses select for new viral escape variants during the acute phase of infection. We sequenced the entire virus immediately after the acute phase, and found that amino-acid replacements accumulated primarily in Tat CTL epitopes. This implies that Tat-specific CTLs may be significantly involved in controlling wild-type virus replication, and suggests that responses against viral proteins that are expressed early during the viral life cycle might be attractive targets for HIV vaccine development.


PLOS Computational Biology | 2008

A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach

Peng Wang; John Sidney; Courtney Dow; Bianca R. Mothé; Alessandro Sette; Bjoern Peters

The identification of MHC class II restricted peptide epitopes is an important goal in immunological research. A number of computational tools have been developed for this purpose, but there is a lack of large-scale systematic evaluation of their performance. Herein, we used a comprehensive dataset consisting of more than 10,000 previously unpublished MHC-peptide binding affinities, 29 peptide/MHC crystal structures, and 664 peptides experimentally tested for CD4+ T cell responses to systematically evaluate the performances of publicly available MHC class II binding prediction tools. While in selected instances the best tools were associated with AUC values up to 0.86, in general, class II predictions did not perform as well as historically noted for class I predictions. It appears that the ability of MHC class II molecules to bind variable length peptides, which requires the correct assignment of peptide binding cores, is a critical factor limiting the performance of existing prediction tools. To improve performance, we implemented a consensus prediction approach that combines methods with top performances. We show that this consensus approach achieved best overall performance. Finally, we make the large datasets used publicly available as a benchmark to facilitate further development of MHC class II binding peptide prediction methods.


Nature Medicine | 2004

Reversion of CTL escape-variant immunodeficiency viruses in vivo

Thomas C. Friedrich; Elizabeth Dodds; Levi Yant; Lara Vojnov; Richard Rudersdorf; Candice Cullen; David T. Evans; Ronald C. Desrosiers; Bianca R. Mothé; John Sidney; Alessandro Sette; Kevin J. Kunstman; Steven M. Wolinsky; Michael Piatak; Jeffrey D. Lifson; Austin L. Hughes; Nancy A. Wilson; David H. O'Connor; David I. Watkins

Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.


Journal of Immunology | 2000

Induction of AIDS Virus-Specific CTL Activity in Fresh, Unstimulated Peripheral Blood Lymphocytes from Rhesus Macaques Vaccinated with a DNA Prime/Modified Vaccinia Virus Ankara Boost Regimen

Todd M. Allen; Thorsten U. Vogel; Deborah H. Fuller; Bianca R. Mothé; Susan Steffen; Jon E. Boyson; Tim Shipley; James T. Fuller; Tomáš Hanke; Alessandro Sette; John D. Altman; Bernard Moss; Andrew J. McMichael; David I. Watkins

The observed role of CTL in the containment of AIDS virus replication suggests that an effective HIV vaccine will be required to generate strong CTL responses. Because epitope-based vaccines offer several potential advantages for inducing strong, multispecific CTL responses, we tested the ability of an epitope-based DNA prime/modified vaccinia virus Ankara (MVA) boost vaccine to induce CTL responses against a single SIVgag CTL epitope. As assessed using both 51Cr release assays and tetramer staining of in vitro stimulated PBMC, DNA vaccinations administered to the skin with the gene gun induced and progressively increased p11C, C→M (CTPYDINQM)-specific CD8+ T lymphocyte responses in six of six Mamu-A*01+ rhesus macaques. Tetramer staining of fresh, unstimulated PBMC from two of the DNA-vaccinated animals indicated that as much as 0.4% of all CD3+/CD8α+ T lymphocytes were specific for the SIVgag CTL epitope. Administration of MVA expressing the SIVgag CTL epitope further boosted these responses, such that 0.8–20.0% of CD3+/CD8α+ T lymphocytes in fresh, unstimulated PBMC were now Ag specific. Enzyme-linked immunospot assays confirmed this high frequency of Ag-specific cells, and intracellular IFN-γ staining demonstrated that the majority of these cells produced IFN-γ after peptide stimulation. Moreover, direct ex vivo SIV-specific cytotoxic activity could be detected in PBMC from five of the six DNA/MVA-vaccinated animals, indicating that this epitope-based DNA prime/MVA boost regimen represents a potent method for inducing high levels of functionally active, Ag-specific CD8+ T lymphocytes in non-human primates.


Journal of Virology | 2004

Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection.

Todd M. Allen; Marcus Altfeld; Xu G. Yu; Kristin M. O'Sullivan; Mathias Lichterfeld; Sylvie Le Gall; M. John; Bianca R. Mothé; Paul K. Lee; Elizabeth T. Kalife; Daniel E. Cohen; Kenneth A. Freedberg; Daryld Strick; Mary N. Johnston; Alessandro Sette; Eric S. Rosenberg; S. Mallal; Philip J. R. Goulder; Christian Brander; Bruce D. Walker

ABSTRACT Numerous studies now support that human immunodeficiency virus type 1 (HIV-1) evolution is influenced by immune selection pressure, with population studies showing an association between specific HLA alleles and mutations within defined cytotoxic T-lymphocyte epitopes. Here we combine sequence data and functional studies of CD8 T-cell responses to demonstrate that allele-specific immune pressures also select for mutations flanking CD8 epitopes that impair antigen processing. In persons expressing HLA-A3, we demonstrate consistent selection for a mutation in a C-terminal flanking residue of the normally immunodominant Gag KK9 epitope that prevents its processing and presentation, resulting in a rapid decline in the CD8 T-cell response. This single amino acid substitution also lies within a second HLA-A3-restricted epitope, with the mutation directly impairing recognition by CD8 T cells. Transmission of the mutation to subjects expressing HLA-A3 was shown to prevent the induction of normally immunodominant acute-phase responses to both epitopes. However, subsequent in vivo reversion of the mutation was coincident with delayed induction of new CD8 T-cell responses to both epitopes. These data demonstrate that mutations within the flanking region of an HIV-1 epitope can impair recognition by an established CD8 T-cell response and that transmission of these mutations alters the acute-phase CD8+ T-cell response. Moreover, reversion of these mutations in the absence of the original immune pressure reveals the potential plasticity of immunologically selected evolutionary changes.


Immunogenetics | 2005

Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications.

Huynh-Hoa Bui; John Sidney; Bjoern Peters; Muthuraman Sathiamurthy; Asabe Sinichi; Kelly-Anne Purton; Bianca R. Mothé; Francis V. Chisari; David I. Watkins; Alessandro Sette

Prediction of which peptides can bind major histocompatibility complex (MHC) molecules is commonly used to assist in the identification of T cell epitopes. However, because of the large numbers of different MHC molecules of interest, each associated with different predictive tools, tool generation and evaluation can be a very resource intensive task. A methodology commonly used to predict MHC binding affinity is the matrix or linear coefficients method. Herein, we described Average Relative Binding (ARB) matrix methods that directly predict IC50 values allowing combination of searches involving different peptide sizes and alleles into a single global prediction. A computer program was developed to automate the generation and evaluation of ARB predictive tools. Using an in-house MHC binding database, we generated a total of 85 and 13 MHC class I and class II matrices, respectively. Results from the automated evaluation of tool efficiency are presented. We anticipate that this automation framework will be generally applicable to the generation and evaluation of large numbers of MHC predictive methods and tools, and will be of value to centralize and rationalize the process of evaluation of MHC predictions. MHC binding predictions based on ARB matrices were made available at http://epitope.liai.org:8080/matrix web server.


Journal of Virology | 2003

Expression of the Major Histocompatibility Complex Class I Molecule Mamu-A*01 Is Associated with Control of Simian Immunodeficiency Virus SIVmac239 Replication

Bianca R. Mothé; Jason T. Weinfurter; Chenxi Wang; William M. Rehrauer; Nancy A. Wilson; Todd M. Allen; David B. Allison; David I. Watkins

ABSTRACT Several HLA alleles are associated with attenuated human immunodeficiency virus disease progression. We explored the relationship between the expression of particular major histocompatibility complex (MHC) class I alleles and viremia in simian immunodeficiency virus SIVmac239-infected macaques. Of the common MHC class I alleles, animals that expressed Mamu-A*01 exhibited the best control of viral replication.


Journal of Virology | 2003

Major Histocompatibility Complex Class I Alleles Associated with Slow Simian Immunodeficiency Virus Disease Progression Bind Epitopes Recognized by Dominant Acute-Phase Cytotoxic-T-Lymphocyte Responses

David H. O'Connor; Bianca R. Mothé; Jason T. Weinfurter; Sarah Fuenger; William M. Rehrauer; Peicheng Jing; Richard R. Rudersdorf; Max E. Liebl; Kendall Krebs; Joshua Vasquez; Elizabeth Dodds; John T. Loffredo; Sarah R. Martin; Adrian B. McDermott; Todd M. Allen; Chenxi Wang; G. G. Doxiadis; David C. Montefiori; Austin L. Hughes; Dennis R. Burton; David B. Allison; Steven M. Wolinsky; Ronald E. Bontrop; Louis J. Picker; David I. Watkins

ABSTRACT Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIVmac239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat28-35SL8) and the Mamu-B*17-restricted response (Nef165-173IW9) typically select for viral escape variants in early SIVmac239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat28-35SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection.


Journal of Immunology | 2005

Rationally Engineered Therapeutic Proteins with Reduced Immunogenicity

Shabnam Tangri; Bianca R. Mothé; Julie K. Eisenbraun; John Sidney; Scott Southwood; Kristen Briggs; John Zinckgraf; Pamuk Bilsel; Mark J. Newman; Robert W. Chesnut; Cynthia LiCalsi; Alessandro Sette

Chronic administration of protein therapeutics may elicit unacceptable immune responses to the specific protein. Our hypothesis is that the immunogenicity of protein drugs can be ascribed to a few immunodominant helper T lymphocyte (HTL) epitopes, and that reducing the MHC binding affinity of these HTL epitopes contained within these proteins can generate drugs with lower immunogenicity. To test this hypothesis, we studied the protein therapeutic erythropoietin (Epo). Two regions within Epo, designated Epo 91–120 and Epo 126–155, contained HTL epitopes that were recognized by individuals with numerous HLA-DR types, a property common to immunodominant HTL epitopes. We then engineered analog epitopes with reduced HLA binding affinity. These analog epitopes were associated with reduced in vitro immunogenicity. Two modified forms of Epo containing these substitutions were shown to be bioactive and nonimmunogenic in vitro. These findings support our hypothesis and demonstrate that immunogenicity of protein drugs can be reduced in a systematic and predictable manner.


Journal of Virology | 2001

CD8+ Lymphocytes from Simian Immunodeficiency Virus-Infected Rhesus Macaques Recognize 14 Different Epitopes Bound by the Major Histocompatibility Complex Class I Molecule Mamu-A*01: Implications for Vaccine Design and Testing

Todd M. Allen; Bianca R. Mothé; John Sidney; Peicheng Jing; John L. Dzuris; Max E. Liebl; Thorsten U. Vogel; David H. O'Connor; Xiaochi Wang; Michael C. Wussow; Thomson J; John D. Altman; David I. Watkins; Alessandro Sette

ABSTRACT It is becoming increasingly clear that any human immunodeficiency virus (HIV) vaccine should induce a strong CD8+ response. Additional desirable elements are multispecificity and a focus on conserved epitopes. The use of multiple conserved epitopes arranged in an artificial gene (or EpiGene) is a potential means to achieve these goals. To test this concept in a relevant disease model we sought to identify multiple simian immunodeficiency virus (SIV)-derived CD8+ epitopes bound by a single nonhuman primate major histocompatibility complex (MHC) class I molecule. We had previously identified the peptide binding motif of Mamu-A*012, a common rhesus macaque MHC class I molecule that presents the immunodominant SIV gag-derived cytotoxic T lymphocyte (CTL) epitope Gag_CM9 (CTPYDINQM). Herein, we scanned SIV proteins for the presence of Mamu-A*01 motifs. The binding capacity of 221 motif-positive peptides was determined using purified Mamu-A*01 molecules. Thirty-seven peptides bound with apparentKd values of 500 nM or lower, with 21 peptides binding better than the Gag_CM9 peptide. Peripheral blood mononuclear cells from SIV-infected Mamu-A*01+ macaques recognized 14 of these peptides in ELISPOT, CTL, or tetramer analyses. This study reveals an unprecedented complexity and diversity of anti-SIV CTL responses. Furthermore, it represents an important step toward the design of a multiepitope vaccine for SIV and HIV.

Collaboration


Dive into the Bianca R. Mothé's collaboration.

Top Co-Authors

Avatar

Alessandro Sette

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

John Sidney

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bjoern Peters

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

David H. O'Connor

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nancy A. Wilson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Scott Southwood

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Courtney Dow

California State University San Marcos

View shared research outputs
Top Co-Authors

Avatar

David B. Allison

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Max E. Liebl

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge