Bibiana M. Coppotelli
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bibiana M. Coppotelli.
Microbial Ecology | 2008
Bibiana M. Coppotelli; A. Ibarrolaza; M.T. Del Panno; Irma S. Morelli
The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO2 production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.
FEMS Microbiology Ecology | 2016
Sabrina Festa; Marianela Macchi; Federico Cortés; Irma S. Morelli; Bibiana M. Coppotelli
The effect of bioaugmentation with Sphingobium sp. AM strain on different soils microbiomes, pristine soil (PS), chronically contaminated soil (IPK) and recently contaminated soil (Phe) and their implications in bioremediation efficiency was studied by focusing on the ecology that drives bacterial communities in response to inoculation. AM strain draft genome codifies genes for metabolism of aromatic and aliphatic hydrocarbons. In Phe, the inoculation improved the elimination of phenanthrene during the whole treatment, whereas in IPK no improvement of degradation of any PAH was observed. Through the pyrosequencing analysis, we observed that inoculation managed to increase the richness and diversity in both contaminated microbiomes, therefore, independently of PAH degradation improvement, we observed clues of inoculant establishment, suggesting it may use other resources to survive. On the other hand, the inoculation did not influence the bacterial community of PS. On both contaminated microbiomes, incubation conditions produced a sharp increase on Actinomycetales and Sphingomonadales orders, while inoculation caused a relative decline of Actinomycetales. Inoculation of most diverse microbiomes, PS and Phe, produced a coupled increase of Sphingomonadales, Burkholderiales and Rhizobiales orders, although it may exist a synergy between those genera; our results suggest that this would not be directly related to PAH degradation.
Archive | 2013
Irma Susana Morelli; Mario Carlos Nazareno Saparrat; María T. Del Panno; Bibiana M. Coppotelli; Angélica Arrambari
Polycyclic aromatic hydrocarbons (PAHs) are by-products of the incomplete combustion of organic materials. They are considered to be priority pollutants in the environment due to their recalcitrance and mutagenic properties. The principal PAH loss process from soil is through microbial degradation; therefore, the bioremediation is considered as an efficient, financially affordable, and adaptable alternative for the recuperation of PAH-contaminated soil. Several microorganisms, such as bacteria, yeasts, and filamentous fungi, are capable of degrading different types of PAHs. The ability of the fungi to degrade the high-molecular-weight PAHs, together with their physiological versatility, converts the fungal remediation in a promising technique for the cleanup of PAH-contaminated soil. This chapter summarizes the recent information on the metabolic pathway of the fungal transformation of PAHs and provides a critical review of previous work about fungal bioremediation of PAH-contaminated soil. Also, some of the most recently used fungal technology to enhance PAHs bioremediation processes is discussed.
PLOS ONE | 2017
Sabrina Festa; Bibiana M. Coppotelli; L. Madueño; Claudia Lorena Loviso; Marianela Macchi; Ricardo Neme Tauil; María Pía Valacco; Irma Susana Morelli
The present study describes the behavior of a natural phenanthrene-degrading consortium (CON), a synthetic consortium (constructed with isolated strains from CON) and an isolated strain form CON (Sphingobium sp. AM) in phenanthrene cultures to understand the interactions among the microorganisms present in the natural consortium during phenanthrene degradation as a sole carbon and energy source in liquid cultures. In the contaminant degradation assay, the defined consortium not only achieved a major phenanthrene degradation percentage (> 95%) but also showed a more efficient elimination of the intermediate metabolite. The opposite behavior occurred in the CON culture where the lowest phenanthrene degradation and the highest HNA accumulation were observed, which suggests the presence of positive and also negative interaction in CON. To consider the uncultured bacteria present in CON, a metagenomic library was constructed with total CON DNA. One of the resulting scaffolds (S1P3) was affiliated with the Betaproteobacteria class and resulted in a significant similarity with a genome fragment from Burkholderia sp. HB1 chromosome 1. A complete gene cluster, which is related to one of the lower pathways (meta-cleavage of catechol) involved in PAH degradation (ORF 31–43), mobile genetic elements and associated proteins, was found. These results suggest the presence of at least one other microorganism in CON besides Sphingobium sp. AM, which is capable of degrading PAH through the meta-cleavage pathway. Burkholderiales order was further found, along with Sphingomonadales order, by a metaproteomic approach, which indicated that both orders were metabolically active in CON. Our results show the presence of negative interactions between bacterial populations found in a natural consortium selected by enrichment techniques; moreover, the synthetic syntrophic processing chain with only one microorganism with the capability of degrading phenanthrene was more efficient in contaminant and intermediate metabolite degradation than a generalist strain (Sphingobium sp. AM).
Science of The Total Environment | 2018
Martina Cecotti; Bibiana M. Coppotelli; Verónica C. Mora; M. Viera; Irma S. Morelli
Shifts in the bacterial-community dynamics, bioavailability, and biodegradation of polycyclic aromatic hydrocarbons (PAHs) of chronically contaminated soil were analyzed in Triton X-100-treated microcosms at the critical micelle concentration (T-CMC) and at two sub-CMC doses. Only the sub-CMC-dose microcosms reached sorbed-PAH concentrations significantly lower than the control: 166±32 and 135±4mgkg-1 dry soil versus 266±51mgkg-1; consequently an increase in high- and low-molecular-weight PAHs biodegradation was observed. After 63days of incubation pyrosequencing data evidenced differences in diversity and composition between the surfactant-modified microcosms and the control, with those with sub-CMC doses containing a predominance of the orders Sphingomonadales, Acidobacteriales, and Gemmatimonadales (groups of known PAHs-degrading capability). The T-CMC microcosm exhibited a lower richness and diversity index with a marked predominance of the order Xanthomonadales, mainly represented by the Stenotrophomonas genus, a PAHs- and Triton X-100-degrading bacterium. In the T-CMC microcosm, whereas the initial surface tension was 35mNm-1, after 63days of incubation an increase up to 40mNm-1 was registered. The previous observation and the gas-chromatography data indicated that the surfactant may have been degraded at the CMC by a highly selective bacterial community with a consequent negative impact on PAHs biodegradation. This work obtained strong evidence for the involvement of physicochemical and biologic influences determining the different behaviors of the studied microcosms. The results reported here contribute significantly to an optimization of, surfactant-enhanced bioremediation strategies for chronically contaminated soil since the application of doses below the CMC would reduce the overall costs.
Journal of Applied Microbiology | 2018
L. Madueño; Bibiana M. Coppotelli; Sabrina Festa; H.M. Alvarez; Irma S. Morelli
To analyse the physiological response of Sphingobium sp. 22B to water stress.
International Biodeterioration & Biodegradation | 2011
L. Madueño; Bibiana M. Coppotelli; H.M. Alvarez; Irma S. Morelli
Microbial Ecology | 2010
Bibiana M. Coppotelli; Agustín Ibarrolaza; Romina L. Dias; María T. Del Panno; Luise Berthe-Corti; Irma Susana Morelli
Applied Soil Ecology | 2016
Sabrina Festa; Bibiana M. Coppotelli; Irma S. Morelli
International Biodeterioration & Biodegradation | 2013
Sabrina Festa; Bibiana M. Coppotelli; Irma S. Morelli