Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bibiana Moreno-Carranza is active.

Publication


Featured researches published by Bibiana Moreno-Carranza.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Prolactin promotes oxytocin and vasopressin release by activating neuronal nitric oxide synthase in the supraoptic and paraventricular nuclei

Claudia Vega; Bibiana Moreno-Carranza; Miriam Zamorano; Andrés Quintanar-Stephano; Isabel Méndez; Stéphanie Thebault; Gonzalo Martínez de la Escalera; Carmen Clapp

Prolactin (PRL) stimulates the secretion of oxytocin (OXT) and arginine AVP as part of the maternal adaptations facilitating parturition and lactation. Both neurohormones are under the regulation of nitric oxide. Here, we investigate whether the activation of neuronal nitric oxide synthase (nNOS) in the hypothalamo-neurohypophyseal system mediates the effect of PRL on OXT and AVP release and whether these effects operate in males. Plasma levels of OXT and AVP were measured in male rats after the intracerebroventricular injection of PRL or after inducing hyperprolactinemia by placing two anterior pituitary glands under the kidney capsule. NOS activity was evaluated in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei by NADPH-diaphorase histochemistry and in hypothalamic extracts by the phosphorylation/inactivation of nNOS at Ser(847). Elevated central and systemic PRL correlated with increased NOS activity in the PVN and SON and with higher OXT and AVP circulating levels. Notably, treatment with 7-nitroindazole, a selective inhibitor of nNOS, prevented PRL-induced stimulation of the release of both neurohormones. Also, phosphorylation of nNOS was reduced in hyperprolactinemic rats, and treatment with bromocriptine, an inhibitor of anterior pituitary PRL secretion, suppressed this effect. These findings suggest that PRL enhances nNOS activity in the PVN and SON, thereby contributing to the regulation of OXT and AVP release. This mechanism likely contributes to the regulation of processes beyond those of female reproduction.


Journal of Clinical Investigation | 2013

Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis

Norma Adán; Jessica Guzmán-Morales; Maria G. Ledesma-Colunga; Sonia I. Perales-Canales; Andrés Quintanar-Stephano; Fernando López-Barrera; Isabel Méndez; Bibiana Moreno-Carranza; Jakob Triebel; Nadine Binart; Gonzalo Martínez de la Escalera; Stéphanie Thebault; Carmen Clapp

Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3-dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor-null (Prlr(-/-)) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA.


Investigative Ophthalmology & Visual Science | 2011

Vasoinhibin Gene Transfer by Adenoassociated Virus Type 2 Protects against VEGF- and Diabetes-Induced Retinal Vasopermeability

Mayda Ramírez; Zhijian Wu; Bibiana Moreno-Carranza; Michael C. Jeziorski; Edith Arnold; Nundehui Díaz-Lezama; Gonzalo Martínez de la Escalera; Peter Colosi; Carmen Clapp

PURPOSE Specific proteolytic cleavages of the hormone prolactin (PRL) generate vasoinhibins, a family of peptides (including 16-kDa PRL) that are able to inhibit the pathologic increase in retinal vasopermeability (RVP) associated with diabetes. Here the authors tested the ability of an adenoassociated virus type 2 (AAV2) vasoinhibin vector to inhibit vascular endothelial growth factor (VEGF)- and diabetes-induced RVP. METHODS AAV2 vectors encoding vasoinhibin, PRL, or soluble VEGF receptor 1 (soluble FMS-like tyrosine kinase-1 [sFlt-1]) were injected intravitreally into the eyes of rats. Four weeks later, either VEGF was injected intravitreally or diabetes was induced with streptozotocin. Tracer accumulation was evaluated as an index of RVP using fluorescein angiography or the Evans blue dye method. RT-PCR verified transgene expression in the retina, and the intravitreal injection of an AAV2 vector encoding green fluorescent protein revealed transduced cells in the retinal ganglion cell layer. In addition, Western blot analysis of AAV2-transduced HEK293 cells confirmed the expression and secretion of the vector-encoded proteins. RESULTS The AAV2-vasoinhibin vector prevented the increase in tracer accumulation that occurs 24 hours after the intravitreal injection of VEGF. Diabetes induced a significant increase in tracer accumulation compared with nondiabetic controls. This increase was blocked by the AAV2-vasoinhibin vector and reduced by the AAV2-sFlt-1 vector. The AAV2-PRL vector had no effect. CONCLUSIONS These results show that an AAV2-vasoinhibin vector prevents pathologic RVP and suggest it could have therapeutic value in patients with diabetic retinopathy.


Psychoneuroendocrinology | 2014

Prolactin-derived vasoinhibins increase anxiety- and depression-related behaviors

Miriam Zamorano; Maria G. Ledesma-Colunga; Norma Adán; Camila Vera-Massieu; María Lemini; Isabel Méndez; Bibiana Moreno-Carranza; Inga D. Neumann; Stéphanie Thebault; Gonzalo Martínez de la Escalera; Luz Torner; Carmen Clapp

The hormone prolactin (PRL) regulates neuroendocrine and emotional stress responses. It is found in the hypothalamus, where the protein is partially cleaved to vasoinhibins, a family of N-terminal antiangiogenic PRL fragments ranging from 14 to 18kDa molecular masses, with unknown effects on the stress response. Here, we show that the intracerebroventricular administration of a recombinant vasoinhibin, containing the first 123 amino acids of human PRL that correspond to a 14kDa PRL, exerts anxiogenic and depressive-like effects detected in the elevated plus-maze, the open field, and the forced swimming tests. To investigate whether stressor exposure affects the generation of vasoinhibins in the hypothalamus, the concentrations of PRL mRNA, PRL, and vasoinhibins were evaluated in hypothalamic extracts of virgin female rats immobilized for 30min at different time points after stress onset. The hypothalamic levels of PRL mRNA and protein were higher at 60min but declined at 360min to levels seen in non-stressed animals. The elevation of hypothalamic PRL did not correlate with the stress-induced increase in circulating PRL levels, nor was it modified by blocking adenohypophyseal PRL secretion with bromocriptine. A vasoinhibin having an electrophoretic migration rate corresponding to 17kDa was detected in the hypothalamus. Despite the elevation in hypothalamic PRL, the levels of this hypothalamic vasoinhibin were similar in stressed and non-stressed rats. Stress reduced the rate of cleavage of PRL to this vasoinhibin as shown by the incubation of recombinant PRL with hypothalamic extracts from stressed rats. These results suggest that vasoinhibins are potent anxiogenic and depressive factors and that stress increases PRL levels in the hypothalamus partly by reducing its conversion to vasoinhibins. The reciprocal interplay between PRL and vasoinhibins may represent an effective mechanism to regulate anxiety and depression.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis

Bibiana Moreno-Carranza; Maite Goya-Arce; Claudia Vega; Norma Adán; Jakob Triebel; Fernando López-Barrera; Andrés Quintanar-Stephano; Nadine Binart; Gonzalo Martínez de la Escalera; Carmen Clapp

Prolactin (PRL) is a potent liver mitogen and proangiogenic hormone. Here, we used hyperprolactinemic rats and PRL receptor-null mice (PRLR(-/-)) to study the effect of PRL on liver growth and angiogenesis before and after partial hepatectomy (PH). Liver-to-body weight ratio (LBW), hepatocyte and sinusoidal endothelial cell (SEC) proliferation, and hepatic expression of VEGF were measured before and after PH in hyperprolactinemic rats, generated by placing two anterior pituitary glands (AP) under the kidney capsule. Also, LBW and hepatic expression of IL-6, as well as suppressor of cytokine signaling-3 (SOCS-3), were evaluated in wild-type and PRLR(-/-) mice before and after PH. Hyperprolactinemia increased the LBW, the proliferation of hepatocytes and SECs, and VEGF hepatic expression. Also, liver regeneration was increased in AP-grafted rats and was accompanied by elevated hepatocyte and SEC proliferation, and VEGF expression compared with nongrafted controls. Lowering circulating PRL levels with CB-154, an inhibitor of AP PRL secretion, prevented AP-induced stimulation of liver growth. Relative to wild-type animals, PRLR(-/-) mice had smaller livers, and soon after PH, they displayed an approximately twofold increased mortality and elevated and reduced hepatic IL-6 and SOCS-3 expression, respectively. However, liver regeneration was improved in surviving PRLR(-/-) mice. PRL stimulates normal liver growth, promotes survival, and regulates liver regeneration by mechanisms that may include hepatic downregulation of IL-6 and upregulation of SOCS-3, increased hepatocyte proliferation, and angiogenesis. PRL contributes to physiological liver growth and has potential clinical utility for ensuring survival and regulating liver mass in diseases, injuries, or surgery of the liver.


Laboratory Investigation | 2016

Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1

Nundehui Díaz-Lezama; Zhijian Wu; Elva Hortencia Adan-Castro; Edith Arnold; Miguel Vazquez-Membrillo; David Arredondo-Zamarripa; Maria G. Ledesma-Colunga; Bibiana Moreno-Carranza; Gonzalo Martínez de la Escalera; Peter Colosi; Carmen Clapp

Adeno-associated virus (AAV) vector-mediated delivery of inhibitors of blood–retinal barrier breakdown (BRBB) offers promise for the treatment of diabetic macular edema. Here, we demonstrated a reversal of blood–retinal barrier pathology mediated by AAV type 2 (AAV2) vectors encoding vasoinhibin or soluble VEGF receptor 1 (sFlt-1) when administered intravitreally to diabetic rats. Efficacy and safety of the AAV2 vasoinhibin vector were tested by monitoring its effect on diabetes-induced changes in the retinal vascular bed and thickness, and in the electroretinogram (ERG). Also, the transduction of AAV2 vectors and expression of AAV2 receptors and co-receptors were compared between the diabetic and the non-diabetic rat retinas. AAV2 vasoinhibin or AAV2 sFlt-1 vectors were injected intravitreally before or after enhanced BRBB due to diabetes induced by streptozotocin. The BRBB was examined by the Evans blue method, the vascular bed by fluorescein angiography, expression of the AAV2 EGFP reporter vector by confocal microscopy, and the AAV2 genome, expression of transgenes, receptors, and co-receptors by quantitative PCR. AAV2 vasoinhibin and sFlt-1 vectors inhibited the diabetes-mediated increase in BRBB when injected after, but not before, diabetes was induced. The AAV2 vasoinhibin vector decreased retinal microvascular abnormalities and the diabetes-induced reduction of the B-wave of the ERG, but it had no effect in non-diabetic controls. Also, retinal thickness was not altered by diabetes or by the AAV2 vasoinhibin vector. The AAV2 genome, vasoinhibin and sFlt-1 transgenes, and EGFP levels were higher in the retinas from diabetic rats and were associated with an elevated expression of AAV2 receptors (syndecan, glypican, and perlecan) and co-receptors (fibroblast growth factor receptor 1, αvβ5 integrin, and hepatocyte growth factor receptor). We conclude that retinal transduction and efficacy of AAV2 vectors are enhanced in diabetes, possibly due to their elevated cell entry. AAV2 vectors encoding vasoinhibin and sFlt-1 may be desirable gene therapeutics to target diabetic retinopathy and macular edema.


Frontiers of Hormone Research | 2010

Vasoinhibins and the Pituitary Gland

Isabel Méndez; Claudia Vega; Miriam Zamorano; Bibiana Moreno-Carranza; Gonzalo Martínez de la Escalera; Carmen Clapp

Vasoinhibins are a family of peptides that inhibit blood vessel growth, dilation, permeability, and survival. They are generated by the proteolytic cleavage of prolactin by cathepsin D, matrix metalloproteases, and bone morphogenic protein-1. Lactotropes within the anterior pituitary gland produce and release vasoinhibins. Hypothalamic neurons within the supraoptic and paraventricular nuclei also synthesize prolactin and process it to vasoinhibins that are released locally or at the neurohypophyseal endings. While both the anterior and posterior pituitaries may function as sources of circulating vasoinhibins, these peptides could act as local regulators of pituitary gland functions including neovascularization and neurohypophyseal hormone release.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Prolactin regulates liver growth during postnatal development in mice

Bibiana Moreno-Carranza; Marco Bravo-Manríquez; Arelí Baez; Maria G. Ledesma-Colunga; Xarubet Ruiz-Herrera; Pamela Reyes-Ortega; Ericka A. de los Ríos; Yazmín Macotela; Gonzalo Martínez de la Escalera; Carmen Clapp

The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration, and its levels are high in the circulation of newborn infants, but whether PRL plays a role in neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 wk after birth, when liver growth lags behind body growth. At postnatal week 4, the production of PRL by the liver ceases coinciding with the elevation of circulating PRL and the faster liver growth that catches up with body growth. PRL receptor null mice ( Prlr-/-) show a significant decrease in the LBW at 1, 4, 6, and 10 postnatal weeks and reduced liver expression of proliferation [cyclin D1 ( Ccnd1)] and angiogenesis [platelet/endothelial cell adhesion molecule 1 ( Pecam1)] markers relative to Prlr+/+ mice. However, the LBW increases in Prlr-/- mice at postnatal week 2 concurring with the enhanced liver expression of Igf-1 and the liver upregulation and downregulation of suppressor of cytokine signaling 2 ( Socs2) and Socs3, respectively. These findings indicate that PRL acts locally and systemically to restrict and stimulate postnatal liver growth. PRL inhibits liver and body growth by attenuating growth hormone-induced Igf-1 liver expression via Socs2 and Socs3-related mechanisms.


Advances in Experimental Medicine and Biology | 2015

Regulation of Blood Vessels by Prolactin and Vasoinhibins

Carmen Clapp; Stéphanie Thebault; Yazmín Macotela; Bibiana Moreno-Carranza; Jakob Triebel; Gonzalo Martínez de la Escalera


Investigative Ophthalmology & Visual Science | 2016

An AAV2 vector encoding prolactin reverses blood retinal barrier pathology when administered intravitreally to diabetic rats

Nundehui Díaz-Lezama; Zhijian Wu; Elva Hortencia Adan-Castro; Bibiana Moreno-Carranza; Gonzalo Martínez de la Escalera; Carmen Clapp

Collaboration


Dive into the Bibiana Moreno-Carranza's collaboration.

Top Co-Authors

Avatar

Carmen Clapp

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Andrés Quintanar-Stephano

Autonomous University of Aguascalientes

View shared research outputs
Top Co-Authors

Avatar

Claudia Vega

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Isabel Méndez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Maria G. Ledesma-Colunga

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Nundehui Díaz-Lezama

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Thebault

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Peter Colosi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhijian Wu

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge