Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bicheng Zhu is active.

Publication


Featured researches published by Bicheng Zhu.


Small | 2017

Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity

Junwei Fu; Bicheng Zhu; Chuanjia Jiang; Bei Cheng; Wei You; Jiaguo Yu

Artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2 is considered as a potential route for solving ever-increasing energy crisis and greenhouse effect. Herein, hierarchical porous O-doped graphitic carbon nitride (g-C3 N4 ) nanotubes (OCN-Tube) are prepared via successive thermal oxidation exfoliation and curling-condensation of bulk g-C3 N4 . The as-prepared OCN-Tube exhibits hierarchically porous structures, which consist of interconnected multiwalled nanotubes with uniform diameters of 20-30 nm. The hierarchical OCN-Tube shows excellent photocatalytic CO2 reduction performance under visible light, with methanol evolution rate of 0.88 µmol g-1 h-1 , which is five times higher than bulk g-C3 N4 (0.17 µmol g-1 h-1 ). The enhanced photocatalytic activity of OCN-Tube is ascribed to the hierarchical nanotube structure and O-doping effect. The hierarchical nanotube structure endows OCN-Tube with higher specific surface area, greater light utilization efficiency, and improved molecular diffusion kinetics, due to the more exposed active edges and multiple light reflection/scattering channels. The O-doping optimizes the band structure of g-C3 N4 , resulting in narrower bandgap, greater CO2 affinity, and uptake capacity as well as higher separation efficiency of photogenerated charge carriers. This work provides a novel strategy to design hierarchical g-C3 N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.


Journal of Materials Chemistry | 2017

Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction

Pengfei Xia; Bicheng Zhu; Jiaguo Yu; Shaowen Cao; Mietek Jaroniec

A two-dimensional layered polymeric photocatalyst, graphitic carbon nitride (g-C3N4), is becoming the rising star in the field of solar-to-fuel conversion. However, the performance of commonly prepared g-C3N4 is usually very weak because of the high recombination rate of photogenerated charge carriers and a small amount of surface active sites. Here we demonstrate simultaneous texture modification and surface functionalization of g-C3N4via a stepwise NH3-mediated thermal exfoliation approach. The resulting g-C3N4 photocatalyst possesses a hierarchical structure obtained by the assembly of amine-functionalized ultrathin nanosheets and thus exhibits remarkably enhanced light harvesting, a high redox ability of charge carriers, increased CO2 adsorption and a larger amount of surface active sites, as well as improved charge carrier transfer and separation. Therefore the aforementioned hierarchical g-C3N4 consisting of amine-functionalized ultra-thin nanosheets shows much better performance for photocatalytic CO2 reduction than unmodified conventional g-C3N4 photocatalysts.


Journal of Hazardous Materials | 2017

Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions

Chunsheng Lei; Xiaofeng Zhu; Bicheng Zhu; Chuanjia Jiang; Yao Le; Jiaguo Yu

The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600°C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4mg/g at 30°C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO32->SO42->H2PO4->Cl-. This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.


Angewandte Chemie | 2017

Phosphorene Co-catalyst Advancing Highly Efficient Visible-Light Photocatalytic Hydrogen Production

Jingrun Ran; Bicheng Zhu; Shi Zhang Qiao

Transitional metals are widely used as co-catalysts boosting photocatalytic H2 production. However, metal-based co-catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal-free co-catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high-efficiency metal-free co-catalyst for CdS, Zn0.8 Cd0.2 S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron-based X-ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly-active, cheap and green photocatalysts.


Journal of Colloid and Interface Science | 2016

Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water

Chunsheng Lei; Xiaofeng Zhu; Bicheng Zhu; Jiaguo Yu; Wingkei Ho

Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification.


Angewandte Chemie | 2017

Hollow Iron-Vanadium Composite Spheres: A Highly Efficient Iron-Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt

Ke Fan; Yongfei Ji; Haiyuan Zou; Jinfeng Zhang; Bicheng Zhu; Hong Chen; Quentin Daniel; Yi Luo; Jiaguo Yu; Licheng Sun

Noble-metal-free bimetal-based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high-surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low-cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm-2 catalytic current density), low Tafel slope of 36.7 mV dec-1 , and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low-cost Fe-based electrocatalysts for water splitting without need of Ni or Co.


Journal of Colloid and Interface Science | 2017

Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water

Yingqiu Zheng; Bicheng Zhu; Hua Chen; Wei You; Chuanjia Jiang; Jiaguo Yu

Monodispersed hierarchical flower-like nickel(II) oxide (NiO) microspheres were fabricated by a facile solvothermal reaction with the assistance of ethanolamine and a subsequent calcination process. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, zeta potential measurement and Fourier transform infrared spectroscopy. Flower-like nickel(II) hydroxide microspheres with uniform diameters of approximate 6.3μm were obtained after the solvothermal reaction. After heat treatment at 350°C, the crystal phase transformed to NiO, but the hierarchical porous structure was maintained. The as-prepared microspheres exhibited outstanding performance for the adsorption of Congo red (CR), an anionic organic dye, from aqueous solution at circumneutral pH. The pseudo-second-order model can make a good description of the adsorption kinetics, while Langmuir model could well express the adsorption isotherms, with calculated maximum CR adsorption capacity of 534.8 and 384.6mgg-1, respectively, for NiO and Ni(OH)2. The adsorption mechanism of CR onto the as-synthesized samples can be mainly attributed to electrostatic interaction between the positively charged sample surface and the anionic CR molecules. The as-prepared NiO microspheres are a promising adsorbent for CR removal in water treatment.


RSC Advances | 2016

Hierarchically porous NiO–Al2O3 nanocomposite with enhanced Congo red adsorption in water

Chunsheng Lei; Xiaofeng Zhu; Yao Le; Bicheng Zhu; Jiaguo Yu; Wingkei Ho

Congo red (CR) has been widely used in the textile industry. However, the discharge of wastewater containing CR is a subject of great concern with regard to environmental protection. Herein, NiO, Al2O3, and NiO–Al2O3 nanocomposite adsorbents with hierarchical porous structures were prepared by a simple solvothermal method. Adsorption removal of CR dye from aqueous solutions was investigated using the prepared samples as adsorbent, which had hierarchical porous structures composed of mesopores (2–50 nm) and macropores (>50 nm). The equilibrium adsorption data of CR on the NiO–Al2O3 samples were well fitted by the Langmuir model and yielded a maximum adsorption amount of 357 mg g−1, which was higher than that of NiO and Al2O3 samples. The high adsorption of the NiO–Al2O3 nanocomposite sample was caused by the synergic effect of its hierarchical porous structures, high specific surface area, and positive surface charge at pH 7. Adsorption kinetic data could be well fitted by the pseudo-second-order kinetic equation, suggesting that pseudo-second-order kinetics could well represent the adsorption kinetics of the NiO–Al2O3 samples. The calculated activation energy needed by NiO–Al2O3 samples to adsorb CR indicated that the adsorption of CR molecules on NiO–Al2O3 sample was facilitated by physical adsorption process.


Advanced Materials | 2018

Metal‐Free 2D/2D Phosphorene/g‐C3N4 Van der Waals Heterojunction for Highly Enhanced Visible‐Light Photocatalytic H2 Production

Jingrun Ran; Weiwei Guo; Hailong Wang; Bicheng Zhu; Jiaguo Yu; Shi Zhang Qiao

The generation of green hydrogen (H2 ) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H2 production is a highly promising strategy for solar-to-H2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal-free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal-free phosphorene/graphitic carbon nitride (g-C3 N4 ) is fabricated. The phosphorene/g-C3 N4 nanocomposite shows an enhanced visible-light photocatalytic H2 production activity of 571 µmol h-1 g-1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and theoretical calculations. This work not only reports a new metal-free phosphorene/g-C3 N4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics.


RSC Advances | 2016

Effect of calcination on adsorption performance of Mg–Al layered double hydroxide prepared by a water-in-oil microemulsion method

Zhaoxiong Yan; Bicheng Zhu; Jiaguo Yu; Zhihua Xu

Herein, Mg–Al layered double hydroxide (LDH) was firstly prepared by a water-in-oil microemulsion method and the prepared LDH sample was further calcined at different temperatures. The calcined LDH samples were carefully characterized using XRD, nitrogen adsorption, TEM, TGA, XPS, FTIR and zeta potential measurements. Calcined and uncalcined LDH samples were used as adsorbents to remove orange II (O-II) dye in water. Adsorption experiments indicated calcination temperatures had an obvious influence on the adsorption affinity of LDH, and the 500 °C calcined LDH sample (LDH-500) exhibited the maximum adsorption capacity of 602 mg g−1 larger than that of LDH (224 mg g−1). The pseudo-second-order model was the best kinetic model to describe O-II adsorbed on the surface of the adsorbent, and the dye adsorption was fitted well using the Langmuir model for the prepared samples. The adsorption mechanism of O-II dye onto the calcined and uncalcined LDHs samples was mainly related to electrostatic interaction between the anionic O-II molecules and positively charged surface of the adsorbents, and the slow intercalation of O-II into the layers of LDH and reconstruction of LDH-500.

Collaboration


Dive into the Bicheng Zhu's collaboration.

Top Co-Authors

Avatar

Jiaguo Yu

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bei Cheng

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Chuanjia Jiang

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Liuyang Zhang

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shaowen Cao

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wingkei Ho

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jingsan Xu

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pengfei Xia

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jingrun Ran

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge