Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bie Tan is active.

Publication


Featured researches published by Bie Tan.


Journal of Nutritional Biochemistry | 2011

Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle.

Bie Tan; Yulong Yin; Zhiqiang Liu; Wenjie Tang; Haijun Xu; Xiangfeng Kong; Xinguo Li; Kang Yao; Wanting Gu; Stephen B. Smith; Guoyao Wu

Obesity is a major health crisis worldwide and new treatments are needed to fight this epidemic. Using the swine model, we recently reported that dietary L-arginine (Arg) supplementation promotes muscle gain and reduces body-fat accretion. The present study tested the hypothesis that Arg regulates expression of key genes involved in lipid metabolism in skeletal muscle and white adipose tissue. Sixteen 110-day-old barrows were fed for 60 days a corn- and soybean-meal-based diet supplemented with 1.0% Arg or 2.05% L-alanine (isonitrogenous control). Blood samples, longissimus dorsi muscle and overlying subcutaneous adipose tissue were obtained from 170-day-old pigs for biochemical studies. Serum concentrations of leptin, alanine and glutamine were lower, but those for Arg and proline were higher in Arg-supplemented pigs than in control pigs. The percentage of oleic acid was higher but that of stearic acid and linoleic acid was lower in muscle of Arg-supplemented pigs, compared with control pigs. Dietary Arg supplementation increased mRNA levels for fatty acid synthase in muscle, while decreasing those for lipoprotein lipase, glucose transporter-4, and acetyl-coenzyme A carboxylase-α in adipose tissue. Additionally, mRNA levels for hormone sensitive lipase were higher in adipose tissue of Arg-supplemented pigs compared with control pigs. These results indicate that Arg differentially regulates expression of fat-metabolic genes in skeletal muscle and white adipose tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue. Our novel findings provide a biochemical basis for explaining the beneficial effect of Arg in improving the metabolic profile in mammals (including obese humans).


Amino Acids | 2011

Leucine nutrition in animals and humans: mTOR signaling and beyond.

Fengna Li; Yulong Yin; Bie Tan; Xiangfeng Kong; Guoyao Wu

Macronutrients, such as protein or amino acid, not only supply calories but some components may also play as signaling molecules to affect feeding behavior, energy balance, and fuel efficiency. Leucine, a branched-chain amino acid is a good example. After structural roles are satisfied, the ability of leucine to function as signal and oxidative substrate is based on a sufficient intracellular concentration. Therefore, leucine level must be sufficiently high to play the signaling and metabolic roles. Leucine is not only a substrate for protein synthesis of skeletal muscle, but also plays more roles beyond that. Leucine activates signaling factor of mammalian target of rapamycin (mTOR) to promote protein synthesis in skeletal muscle and in adipose tissue. It is also a major regulator of the mTOR sensitive response of food intake to high protein diet. Meanwhile, leucine regulates blood glucose level by promoting gluconeogenesis and aids in the retention of lean mass in a hypocaloric state. It is beneficial to animal nutrition and clinical application and extrapolation to humans.


Journal of Nutritional Biochemistry | 2012

L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells.

Xiangfeng Kong; Bie Tan; Yulong Yin; Haijun Gao; Xilong Li; Laurie A. Jaeger; Fuller W. Bazer; Guoyao Wu

Impairment of placental growth is a major factor contributing to intrauterine growth retardation (IUGR) in both human pregnancy and animal production. Results of recent studies indicate that administration of L-arginine (Arg) to gestating pigs or sheep with IUGR fetuses can enhance fetal growth. However, the underlying mechanisms are largely unknown. The present study tested the hypothesis that Arg stimulates the mammalian target of rapamycin (mTOR) signaling pathway and protein synthesis in porcine conceptus trophectoderm (pTr2) cells. The cells were cultured for 4 days in Arg-free Dulbeccos modified Eagles Ham medium containing 10, 50, 100, 200, 350 or 500 μM Arg. Cell numbers, protein synthesis and degradation, as well as total and phosphorylated levels of mTOR, ribosomal protein S6 kinase 1 (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1), were determined. The pTr2 cells exhibited time (0-6 days)- and Arg concentration (10-350 μM)-dependent increases in proliferation. Addition of 100 and 350 μM Arg to culture medium dose-dependently increased (a) protein synthesis and decreased protein degradation and (b) the abundance of total and phosphorylated mTOR, p70S6K and 4EBP1 proteins. Effects of 350 μM Arg on intracellular protein turnover were only modestly affected when nitric oxide synthesis was inhibited. Collectively, these results indicate a novel and important role for Arg in promoting growth of porcine placental cells largely via a nitric-oxide-independent pathway. Additionally, these findings help to explain beneficial effects of Arg supplementation on improving survival and growth of embryos/fetuses in mammals.


Journal of Nutrition | 2014

Dietary Arginine Supplementation of Mice Alters the Microbial Population and Activates Intestinal Innate Immunity

Wenkai Ren; Shuai Chen; Jie Yin; Jielin Duan; Tiejun Li; Gang Liu; Zemeng Feng; Bie Tan; Yulong Yin; Guoyao Wu

Currently, little is known about the function of arginine in the homeostasis of the intestinal immune system. This study was conducted to test the hypothesis that dietary arginine supplementation may alter intestinal microbiota and innate immunity in mice. Mice were fed a basal diet (containing 0.93% l-arginine; grams per gram) or the basal diet supplemented with 0.5% l-arginine for 14 d. We studied the composition of intestinal microbiota, the activation of innate immunity, and the expression of toll-like receptors (Tlrs), proinflammatory cytokines, and antimicrobials in the jejunum, ileum, or colon of mice. Signal transduction pathway activation in the jejunum and ileum, including TLR4-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase (PI3K)/PI3K-protein kinase B (Akt), was analyzed by Western blotting. Quantitative polymerase chain reaction analysis revealed that arginine supplementation induced (P < 0.05) a shift in the Firmicutes-to-Bacteroidetes ratio to favor Bacteroidetes in the jejunum (0.33 ± 0.04 vs. 1.0 ± 0.22) and ileum (0.20 ± 0.08 vs. 1.0 ± 0.27) compared with the control group. This finding coincided with greater (P < 0.05) activation of the innate immune system, including TLR signaling, as well as expression of proinflammatory cytokines, ​secretory immunoglobulin A, mucins, and Paneth antimicrobials in the jejunum and ileum. Finally, arginine supplementation reduced (P < 0.05) expression of the proteins for NF-κB, MAPK, and PI3K-Akt signaling pathways but activated (P < 0.05) p38 and c-Jun N-terminal protein kinase in the jejunum and the ileum, respectively. Collectively, dietary arginine supplementation of mice changes the intestinal microbiota, contributing to the activation of intestinal innate immunity through NF-κB, MAPK, and PI3K-phosphorylated Akt signaling pathways.


Oxidative Medicine and Cellular Longevity | 2016

Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?

Tarique Hussain; Bie Tan; Yulong Yin; François Blachier; Myrlene Carine B. Tossou; Najma Rahu

Oxidative stress is viewed as an imbalance between the production of reactive oxygen species (ROS) and their elimination by protective mechanisms, which can lead to chronic inflammation. Oxidative stress can activate a variety of transcription factors, which lead to the differential expression of some genes involved in inflammatory pathways. The inflammation triggered by oxidative stress is the cause of many chronic diseases. Polyphenols have been proposed to be useful as adjuvant therapy for their potential anti-inflammatory effect, associated with antioxidant activity, and inhibition of enzymes involved in the production of eicosanoids. This review aims at exploring the properties of polyphenols in anti-inflammation and oxidation and the mechanisms of polyphenols inhibiting molecular signaling pathways which are activated by oxidative stress, as well as the possible roles of polyphenols in inflammation-mediated chronic disorders. Such data can be helpful for the development of future antioxidant therapeutics and new anti-inflammatory drugs.


Journal of Animal Science | 2013

Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: I. Growth performance, immune function, and antioxidation capacity1

Hao Xiao; Miaomiao Wu; Bie Tan; Yulong Yin; T. J. Li; Dingfu Xiao; Lin Li

The mycotoxin deoxynivalenol (DON) is a food contaminant that leads to reduced feed intake and reduced BW gain, as well as organ impairment. On the other hand, antimicrobial peptides have been shown to have positive effects on growth performance, nutrient digestibility, and immune function. The purpose of this study was to investigate the protective effects of composite antimicrobial peptides (CAP) on piglets challenged with DON. After a 7-d adaptation period, 28 individually housed piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% CAP (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 ppm DON + 0.4% CAP (DON + CAP). On d 15 and 30 after the initiation of treatment, blood samples were collected for the determination of blood profile. Piglets were monitored for 30 d to assess performance and then were slaughtered to obtain organs for the determination of the relative weight of organs. The results showed that dietary supplementation with DON decreased (P < 0.05) ADFI, ADG, and G:F, whereas dietary supplementation with CAP improved ADG and G:F (P < 0.05). The relative weight of the kidney and pancreas was greater and the relative weight of the spleen was lighter in the DON treatment than in the other 3 treatments (P < 0.05). There were no effects (P > 0.05) on other relative weights of viscera, except the relative weight of the gallbladder, but the diamine oxidase activity in the liver decreased in DON-treated piglets (P < 0.05). Piglets in the DON treatment had increased serum concentrations of alkaline phosphatase, alanine transaminase, and aspartate aminotransferase and a dramatic decrease in total protein (P < 0.05), whereas there were no differences (P > 0.05) between the DON + CAP treatment and the other treatments. The DON treatment decreased the numbers of red blood cells and platelets, as well as the serum catalase concentrations, and decreased the serum concentrations of H2O2, maleic dialdehyde, and nitric oxide (P < 0.05). The numbers of platelets and thrombocytocrit, as well as the serum concentrations of catalase, were greater, whereas the maleic dialdehyde concentrations were decreased, in both the CAP and DON + CAP treatments compared with the other treatments (P < 0.05). Compared with the control treatment, DON decreased peripheral lymphocyte proliferation on d 15, whereas supplementation with CAP increased it on d 15 and 30 (P < 0.05). These findings indicate that CAP could improve feed efficiency, immune function, and antioxidation capacity and alleviate organ damage, and thus, it has a protective effect in piglets challenged with DON.


Journal of Pineal Research | 2017

Melatonin signaling in T cells: Functions and applications

Wenkai Ren; Gang Liu; Shuai Chen; Jie Yin; Jing Wang; Bie Tan; Guoyao Wu; Fuller W. Bazer; Yuanyi Peng; Tiejun Li; Russel J. Reiter; Yulong Yin

Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T‐cell‐mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T‐cell biology and the beneficial effects of melatonin in T‐cell response‐based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T‐cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T‐cell biology is associated with membrane and nuclear receptors as well as receptor‐independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2‐C/EBPα, are involved in the regulatory roles of melatonin in T‐cell biology. Through modulation in T‐cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T‐cell fate determination, and T cell‐based immune pathologies.


Journal of Animal Science | 2013

Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function.

Hao Xiao; Bie Tan; Miaomiao Wu; Yulong Yin; T. J. Li; D. X. Yuan; Lin Li

Deoxynivalenol (DON) affects animal and human health and targets the gastrointestinal tract. The objective of this study was to evaluate the ability of composite antimicrobial peptides (CAP) to repair intestinal injury in piglets challenged with DON. A total of 28 piglets (Duroc × Landrace × Large Yorkshire) weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (7 pigs/treatment): negative control, basal diet (NC), basal diet + 0.4% composite antimicrobial peptide (CAP), basal diet + 4 mg/kg DON (DON), and basal diet + 4 mg/kg DON + 0.4% CAP (DON + CAP). After an adaptation period of 7 d, blood samples were collected on d 15 and 30 after the initiation of treatment for determinations of the concentrations of D-lactate and diamine oxidase. At the end of the study, all piglets were slaughtered to obtain small intestines for the determination of intestinal morphology, epithelial cell proliferation, and protein expression in the mammalian target of rapamycin (mTOR) signaling pathway. The results showed that DON increased serum concentrations of D-lactate and diamine oxidase, and these values in the CAP and DON + CAP treatments were less than those in the NC and DON treatments, respectively (P < 0.05). The villous height/crypt depth in the jejunum and ileum and the goblet cell number in the ileum in the CAP and DON + CAP treatments were greater than those in the NC and DON treatments (P < 0.05). The proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum in the DON + CAP treatment were greater than those in the DON treatment (P < 0.05). The DON decreased (P < 0.05) the relative protein expression of phosphorylated Akt (Protein Kinase B) and mTOR in the jejunal and ileal mucosa and of phosphorylated 4E-binding protein 1 (p-4EBP1) in the jejunal mucosa, whereas CAP increased (P < 0.05) the protein expression of p-4EBP1 in the jejunum. These findings showed that DON could enhance intestinal permeability, damage villi, cause epithelial cell apoptosis, and inhibit protein synthesis, whereas CAP improved intestinal morphology and promoted intestinal epithelial cell proliferation and protein synthesis, indicating that CAP may repair the intestinal injury induced by DON.


PLOS ONE | 2014

Therapeutic Effects of Glutamic Acid in Piglets Challenged with Deoxynivalenol

Miaomiao Wu; Hao Xiao; Wenkai Ren; Jie Yin; Bie Tan; Gang Liu; Lili Li; C. M. Nyachoti; Xia Xiong; Guoyao Wu

The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.


Journal of Agricultural and Food Chemistry | 2016

Chitosan Oligosaccharide Reduces Intestinal Inflammation That Involves Calcium-Sensing Receptor (CaSR) Activation in Lipopolysaccharide (LPS)-Challenged Piglets.

Bo Huang; Dingfu Xiao; Bie Tan; Hao Xiao; Jing Wang; Jie Yin; Jielin Duan; Ruilin Huang; Chenbo Yang; Yulong Yin

Chitosan oligosaccharide (COS) is a degradation product of chitosan with antioxidative, anti-inflammatory, and antibacterial effects. This study was conducted to investigate the effects of dietary COS on the intestinal inflammatory response and the calcium-sensing receptor (CaSR) and nuclear transcription factor kappa B (NF-κB) signaling pathways that may be involved using a lipopolysaccharide (LPS)-challenged piglet model. A total of 40 weaned piglets were used in a 2 × 2 factorial design; the main factors were dietary treatment (basal or 300 μg/kg COS) and inflammatory challenge (LPS or saline). On the morning of days 14 and 21 after the initiation of treatment, the piglets were injected intraperitoneally with Escherichia coli LPS at 60 and 80 μg/kg body weight or the same amount of sterilized saline, respectively. Blood and small intestine samples were collected on day 14 or 21, respectively. The results showed that piglets challenged with LPS have a significant decrease in average daily gain and gain:feed and histopathological injury in the jejunum and ileum, whereas dietary supplementation with COS significantly alleviated intestinal injury induced by LPS. Piglets fed the COS diet had lower serum concentrations of tumor necrosis factor alpha (TNF-α), interleukin (IL) 6, and IL-8 as well as lower intestinal abundances of pro-inflammatory cytokine mRNA but higher anti-inflammatory cytokine mRNA compared with piglets fed the basal diet among LPS-challenged piglets (p < 0.05). Dietary COS increased intestinal CaSR and PLCβ2 protein expressions in both saline- and LPS-treated piglets, but decreased p-NF-κB p65, IKKα/β, and IκB protein expressions in LPS-challenged piglets (p < 0.05). These findings indicate that COS has the potential to reduce the intestinal inflammatory response, which is concomitant with the activation of CaSR and the inhibition of NF-κB signaling pathways under an inflammatory stimulus.

Collaboration


Dive into the Bie Tan's collaboration.

Top Co-Authors

Avatar

Yulong Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangfeng Kong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gang Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenkai Ren

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fengna Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tiejun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jie Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hao Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shuai Chen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge