Bienvenu Ndagano
University of the Witwatersrand
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bienvenu Ndagano.
Scientific Reports | 2016
Abderrahmen Trichili; Carmelo Rosales-Guzmán; Angela Dudley; Bienvenu Ndagano; Amine Ben Salem; Mourad Zghal; Andrew Forbes
Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.
Optics Express | 2015
Bienvenu Ndagano; Robert Brüning; Melanie McLaren; Michael Duparré; Andrew Forbes
Here we employ both dynamic and geometric phase control of light to produce radially modulated vector-vortex modes, the natural modes of optical fibers. We then measure these modes using a vector modal decomposition set-up as well as a tomography measurement, the latter providing a degree of the non-separability of the vector states, akin to an entanglement measure for quantum states. We demonstrate the versatility of the approach by creating the natural modes of a step-index fiber, which are known to exhibit strong mode coupling, and measure the modal cross-talk and non-separability decay during propagation. Our approach will be useful in mode division multiplexing schemes for transport of classical and quantum states.
Optics Letters | 2016
Bienvenu Ndagano; Hend Sroor; Melanie McLaren; Carmelo Rosales-Guzmán; Andrew Forbes
Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams.
Journal of Lightwave Technology | 2018
Bienvenu Ndagano; Isaac Nape; Mitchell A. Cox; Carmelo Rosales-Guzmán; Andrew Forbes
Vector vortex beams are structured states of light that are nonseparable in their polarisation and spatial mode, they are eigenmodes of free-space and many fiber systems, and have the capacity to be used as information carriers for both classical and quantum communication. Here, we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study their propagation behavior in free-space and optical fiber and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further.
Light-Science & Applications | 2018
Eileen Otte; Carmelo Rosales-Guzmán; Bienvenu Ndagano; Cornelia Denz; Andrew Forbes
It is well known that the entanglement of a quantum state is invariant under local unitary transformations. This rule dictates, for example, that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation. Here, we outline a scenario in which this paradigm does not hold. Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom, the so-called classically entangled states, we demonstrate that the entanglement evolves during propagation, oscillating between maximally entangled (purely vector) and product states (purely scalar). We outline the spin–orbit interaction behind these novel propagation dynamics and confirm the results experimentally, demonstrating spin–orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets, for example, for dynamic laser materials processing, switchable resolution within stimulated emission depletion (STED) systems, and a tractor beam for entanglement.
Proceedings of SPIE | 2016
Carmelo Rosales-Guzmán; Abderrahmen Trichili; Angela Dudley; Bienvenu Ndagano; Amine Ben Salem; Mourad Zghal; Andrew Forbes
Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.
Scientific Reports | 2017
Bienvenu Ndagano; Isaac Nape; Benjamin Perez-Garcia; Stirling Scholes; Raul I. Hernandez-Aranda; Thomas Konrad; Martin P. J. Lavery; Andrew Forbes
Encoding information in high-dimensional degrees of freedom of photons has led to new avenues in various quantum protocols such as communication and information processing. Yet to fully benefit from the increase in dimension requires a deterministic detection system, e.g., to reduce dimension dependent photon loss in quantum key distribution. Recently, there has been a growing interest in using vector vortex modes, spatial modes of light with entangled degrees of freedom, as a basis for encoding information. However, there is at present no method to detect these non-separable states in a deterministic manner, negating the benefit of the larger state space. Here we present a method to deterministically detect single photon states in a four dimensional space spanned by vector vortex modes with entangled polarisation and orbital angular momentum degrees of freedom. We demonstrate our detection system with vector vortex modes from the |
Complex Light and Optical Forces XII | 2018
Nokwazi Mphuthi; Andrew Forbes; Giovanni Milione; Bienvenu Ndagano
Quantum Communications and Quantum Imaging XV | 2017
Isaac Nape; Bienvenu Ndagano; Andrew Forbes
{\boldsymbol{\ell }}
Proceedings of SPIE | 2017
Lucas Gailele; Loyiso Maweza; Angela Dudley; Bienvenu Ndagano; Carmelo Rosales-Guzmán; Andrew Forbes