Bijaya Paul
Tripura University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bijaya Paul.
Journal of Coordination Chemistry | 2016
Mahesh K. Singh; Sanjit Sutradhar; Bijaya Paul; Suman Adhikari; Ray J. Butcher; Sandeep Acharya; Arijit Das
Abstract A mixed-ligand polymeric metal complex of Cd(II) has been prepared by reactions of Cd(NO3)2·4H2O with 1,3-diaminopropane (tn) and potassium salt of 1,1-dicyanoethylene-2,2-dithiolate and characterized on the basis of spectroscopy and single-crystal X-ray diffraction analysis. Single-crystal X-ray diffraction analysis reveals that the Cd(II) complex crystallizes in monoclinic space group P21/n with distorted octahedral coordination geometry. The Cd(II) complex was screened in vitro against fungal pathogens such as Synchytrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231), and Trichophyton mentagrophytes by the disk diffusion method. The biological testing data of the primary ligand K2i-MNT·H2O and [Cd(tn)(i-MNT)]n indicate that the complex exhibits fungistatic antifungal activity, whereas K2i-MNT·H2O has no activity. The fungicidal properties of [Cd(tn)(i-MNT)]n showed that the cadmium complex was more bioactive than the parent ligand.
Journal of Coordination Chemistry | 2015
Mahesh K. Singh; Sanjit Sutradhar; Bijaya Paul; Suman Adhikari; Ray J. Butcher; Sandeep Acharya; Arijit Das
A new luminescent complex of Cd(II) with 1,1-dicyanoethylene-2,2-dithiolate [i-MNT2− = {S2C : C(CN)2}2−] with 1,3-diaminopropane (tn) and 4-methyl pyridine (γ-picoline) as secondary ligands has been synthesized and characterized on the basis of spectroscopy and single-crystal X-ray diffraction analysis. Single-crystal X-ray diffraction analysis reveals that cadmium(II) is five coordinate in a 1-D polymer. Biological screening effects in vitro of the synthesized complex has been tested against five fungi Synchytrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231), and Trichophyton mentagrophytes by the disk diffusion method. A comparative study of inhibition zone values of K2i-MNT·H2O and {[Cd(tn)(iMNT)(4-MePy)]·4H2O}n (1) indicates that the complex exhibits antifungal activity, whereas K2i-MNT·H2O became silent on S. endobioticum, P. oryzae, H. oryzae, C. albicans (ATCC10231), and T. mentagrophytes. Graphical abstract A new luminescent complex of Cd(II) with 1,1-dicyanoethylene-2,2-dithiolate [i-MNT2− = {S2C:C(CN)2}2−] has been synthesized and characterized on the basis of spectroscopy and single-crystal X-ray diffraction analysis. Single-crystal X-ray diffraction analysis reveals that the cadmium(II) complex is five coordinate in a 1-D polymer. Biological screening in vitro of the complex has been tested against five fungi Synchytrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231), and Trichophyton mentagrophytes by the disk diffusion method. The antifungal activity of the complex of Cd(II) is significant compared to K2iMNT on S. endobioticum, P. oryzae, H. oryzae, and T. mentagrophytes and proved to be crucial for the growth-inhibitor effect.
Journal of Coordination Chemistry | 2009
Mahesh K. Singh; Arijit Das; Bijaya Paul
Mixed ligand complexes of Co(II) with nitrogen and sulfur donors, Co(OPD)(S–S) · 2H2O and Co(OPD)(S–S)L2 [OPD = o-phenylenediamine; S–S = 1,1-dicyanoethylene-2,2-dithiolate (i-MNT2−) or 1-cyano-1-carboethoxyethylene-2,2-dithiolate (CED2−); L = pyridine (py), α-picoline (α-pic), β-picoline (β-pic), or γ-picoline (γ-pic)], have been isolated and characterized by analytical data, molar conductance, magnetic susceptibility, electronic, and infrared spectral studies. The molar conductance data reveal non-electrolytes in DMF. Magnetic moment values suggest low-spin and high-spin complexes. The electronic spectral studies suggest distorted octahedral stereochemistry around Co(II) in these complexes. Infrared spectral studies suggest bidentate chelating behavior of i-MNT2−, CED2−, or OPD while other ligands are unidentate in their complexes.
Journal of Coordination Chemistry | 2014
Mahesh K. Singh; Sanjit Sutradhar; Bijaya Paul; Suman Adhikari; Ray J. Butcher; Sandeep Acharya; Arijit Das
A new mixed ligand complex of Zn(II) with 1,1-dicyanoethylene-2,2-dithiolate [i-MNT2− = {S2C:C(CN)2}2−] and 1,3-diaminopropane as ligands has been synthesized and characterized on the basis of spectroscopy and single-crystal X-ray diffraction analysis. Spectroscopic studies and single-crystal X-ray diffraction analysis reveal that the zinc(II) complex is tetrahedral and adopts a 1,3-diaminopropane-assisted linear polymeric assembly. The molar conductance data of the complex in DMF solution show non-electrolytic nature. Biological screening effects of the complex in vitro have been tested against five fungi Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231), and Trichophyton mentagrophytes by the disk diffusion method. A comparative study of inhibition zone values of the primary ligand K2i-MNT·H2O and its synthesized complex indicates that the complex exhibits a fungistatic antifungal activity whereas K2i-MNT·H2O does not affect P. oryzae. Graphical Abstract Complex of Zn(II) with 1,1-dicyanoethylene-2,2-dithiolate [i-MNT2− = {S2C:C(CN)2}2−] and 1,3-diaminopropane.
IOSR Journal of Applied Chemistry | 2014
Arijit Das; Bijaya Paul; R. Sanjeev; V. Jagannadham
Context based learning approaches have been presented in this article as a way to enhance students interest in, as well as time economic learning outcomes from chemical education. In this article state of s-p hybridization of hetero atoms in heterocyclic compounds is empirically calculate from the number of bonds and delocalized lone pair of electrons associated with it. The article explores the results and gives implications for context-based teaching, learning and assessment.
World Journal of Chemical Education | 2013
Arijit Das; Suman Adhikari; Bijaya Paul; R. Sanjeev; V. Jagannadham
Journal of Molecular Structure | 2017
Mahesh K. Singh; Sanjit Sutradhar; Bijaya Paul; Suman Adhikari; Folguni Laskar; Ray J. Butcher; Sandeep Acharya; Arijit Das
World Journal of Chemical Education | 2014
Arijit Das; Suman Adhikari; Debapriya Pal; Bijaya Paul; R. Sanjeev; V. Jagannadham
Transition Metal Chemistry | 2007
Mahesh K. Singh; Arijit Das; Bijaya Paul
Journal of Molecular Structure | 2018
Mahesh K. Singh; Sanjit Sutradhar; Bijaya Paul; Suman Adhikari; Folguni Laskar; Sandeep Acharya; Debabrata Chakraborty; Surajit Biswas; Arijit Das; Subhadip Roy; Antonio Frontera