Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bilal Alatas is active.

Publication


Featured researches published by Bilal Alatas.


Expert Systems With Applications | 2010

Chaotic bee colony algorithms for global numerical optimization

Bilal Alatas

Artificial bee colony (ABC) is the one of the newest nature inspired heuristics for optimization problem. Like the chaos in real bee colony behavior, this paper proposes new ABC algorithms that use chaotic maps for parameter adaptation in order to improve the convergence characteristics and to prevent the ABC to get stuck on local solutions. This has been done by using of chaotic number generators each time a random number is needed by the classical ABC algorithm. Seven new chaotic ABC algorithms have been proposed and different chaotic maps have been analyzed in the benchmark functions. It has been detected that coupling emergent results in different areas, like those of ABC and complex dynamics, can improve the quality of results in some optimization problems. It has been also shown that, the proposed methods have somewhat increased the solution quality, that is in some cases they improved the global searching capability by escaping the local solutions.


Applied Mathematics and Computation | 2010

Chaotic harmony search algorithms

Bilal Alatas

Harmony Search (HS) is one of the newest and the easiest to code music inspired heuristics for optimization problems. Like the use of chaos in adjusting note parameters such as pitch, dynamic, rhythm, duration, tempo, instrument selection, attack time, etc. in real music and in sound synthesis and timbre construction, this paper proposes new HS algorithms that use chaotic maps for parameter adaptation in order to improve the convergence characteristics and to prevent the HS to get stuck on local solutions. This has been done by using of chaotic number generators each time a random number is needed by the classical HS algorithm. Seven new chaotic HS algorithms have been proposed and different chaotic maps have been analyzed in the benchmark functions. It has been detected that coupling emergent results in different areas, like those of HS and complex dynamics, can improve the quality of results in some optimization problems. It has been also shown that, some of the proposed methods have somewhat increased the solution quality, that is in some cases they improved the global searching capability by escaping the local solutions.


Applied Soft Computing | 2008

MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules

Bilal Alatas; Erhan Akin; Ali Karci

In this paper, a Pareto-based multi-objective differential evolution (DE) algorithm is proposed as a search strategy for mining accurate and comprehensible numeric association rules (ARs) which are optimal in the wider sense that no other rules are superior to them when all objectives are simultaneously considered. The proposed DE guided the search of ARs toward the global Pareto-optimal set while maintaining adequate population diversity to capture as many high-quality ARs as possible. ARs mining problem is formulated as a four-objective optimization problem. Support, confidence value and the comprehensibility of the rule are maximization objectives while the amplitude of the intervals which conforms the itemset and rule is minimization objective. It has been designed to simultaneously search for intervals of numeric attributes and the discovery of ARs which these intervals conform in only single run of DE. Contrary to the methods used as usual, ARs are directly mined without generating frequent itemsets. The proposed DE performs a database-independent approach which does not rely upon the minimum support and the minimum confidence thresholds which are hard to determine for each database. The efficiency of the proposed DE is validated upon synthetic and real databases.


Expert Systems With Applications | 2011

ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization

Bilal Alatas

Heuristic based computational algorithms are densely being used in many different fields due to their advantages. When investigated carefully, chemical reactions possess efficient objects, states, process, and events that can be designed as a computational method en bloc. In this study, a novel computational method, which is more robust and have less parameters than that of used in the literature, is intended to be developed inspiring from types and occurring of chemical reactions. The proposed method is named as Artificial Chemical Reaction Optimization Algorithm, ACROA. Applications to multiple-sequence alignment, data mining, and benchmark functions have been performed so as to put forward the performance of developed computational method.


soft computing | 2006

An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules

Bilal Alatas; Erhan Akin

In this paper, a genetic algorithm (GA) is proposed as a search strategy for not only positive but also negative quantitative association rule (AR) mining within databases. Contrary to the methods used as usual, ARs are directly mined without generating frequent itemsets. The proposed GA performs a database-independent approach that does not rely upon the minimum support and the minimum confidence thresholds that are hard to determine for each database. Instead of randomly generated initial population, uniform population that forces the initial population to be not far away from the solutions and distributes it in the feasible region uniformly is used. An adaptive mutation probability, a new operator called uniform operator that ensures the genetic diversity, and an efficient adjusted fitness function are used for mining all interesting ARs from the last population in only single run of GA. The efficiency of the proposed GA is validated upon synthetic and real databases.


Knowledge Based Systems | 2009

Multi-objective rule mining using a chaotic particle swarm optimization algorithm

Bilal Alatas; Erhan Akin

In this paper, classification rule mining which is one of the most studied tasks in data mining community has been modeled as a multi-objective optimization problem with predictive accuracy and comprehensibility objectives. A multi-objective chaotic particle swarm optimization (PSO) method has been introduced as a search strategy to mine classification rules within datasets. The used extension to PSO uses similarity measure for neighborhood and far-neighborhood search to store the global best particles found in multi-objective manner. For the bi-objective problem of rule mining of high accuracy/comprehensibility, the multi-objective approach is intended to allow the PSO algorithm to return an approximation to the upper accuracy/comprehensibility border, containing solutions that are spread across the border. The experimental results show the efficiency of the algorithm.


soft computing | 2008

Rough particle swarm optimization and its applications in data mining

Bilal Alatas; Erhan Akin

This paper proposes a novel particle swarm optimization algorithm, rough particle swarm optimization algorithm (RPSOA), based on the notion of rough patterns that use rough values defined with upper and lower intervals that represent a range or set of values. In this paper, various operators and evaluation measures that can be used in RPSOA have been described and efficiently utilized in data mining applications, especially in automatic mining of numeric association rules which is a hard problem.


Expert Systems With Applications | 2012

A novel chemistry based metaheuristic optimization method for mining of classification rules

Bilal Alatas

When investigated carefully, chemical reactions possess efficient objects, states, process, and events that can be designed as a computational method en bloc. In this study, a novel computational method, which is robust and have less parameters than that of used in the literature, is intended to be developed inspiring from types and occurring of chemical reactions. The proposed method is named as artificial chemical reaction optimization algorithm, ACROA. In this study, one of the first applications of this method has been performed in classification rule discovery field of data mining and efficiency has been demonstrated.


advances in databases and information systems | 2005

Mining fuzzy classification rules using an artificial immune system with boosting

Bilal Alatas; Erhan Akin

In this study, a classification model including fuzzy system, artificial immune system (AIS), and boosting is proposed. The model is mainly focused on the clonal selection principle of biological immune system and evolves a population of antibodies, where each antibody represents the antecedent of a fuzzy classification rule while each antigen represents an instance. The fuzzy classification rules are mined in an incremental fashion, in that the AIS optimizes one rule at a time. The boosting mechanism that is used to increase the accuracy rates of the rules reduces the weight of training instances that are correctly classified by the new rule. Whenever AIS mines a rule, this rule is added to the mined rule list and mining of next rule focuses on rules that account for the currently uncovered or misclassified instances. The results obtained by proposed approach are analyzed with respect to predictive accuracy and simplicity and compared with C4.5Rules.


Artificial Intelligence Review | 2017

Plant intelligence based metaheuristic optimization algorithms

Sinem Akyol; Bilal Alatas

Classical optimization algorithms are insufficient in large scale combinatorial problems and in nonlinear problems. Hence, metaheuristic optimization algorithms have been proposed. General purpose metaheuristic methods are evaluated in nine different groups: biology-based, physics-based, social-based, music-based, chemical-based, sport-based, mathematics-based, swarm-based, and hybrid methods which are combinations of these. Studies on plants in recent years have showed that plants exhibit intelligent behaviors. Accordingly, it is thought that plants have nervous system. In this work, all of the algorithms and applications about plant intelligence have been firstly collected and searched. Information is given about plant intelligence algorithms such as Flower Pollination Algorithm, Invasive Weed Optimization, Paddy Field Algorithm, Root Mass Optimization Algorithm, Artificial Plant Optimization Algorithm, Sapling Growing up Algorithm, Photosynthetic Algorithm, Plant Growth Optimization, Root Growth Algorithm, Strawberry Algorithm as Plant Propagation Algorithm, Runner Root Algorithm, Path Planning Algorithm, and Rooted Tree Optimization.

Collaboration


Dive into the Bilal Alatas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge