Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bilal Camara is active.

Publication


Featured researches published by Bilal Camara.


The Plant Cell | 2003

Oxidative Remodeling of Chromoplast Carotenoids: Identification of the Carotenoid Dioxygenase CsCCD and CsZCD Genes Involved in Crocus Secondary Metabolite Biogenesis

Florence Bouvier; Claude Suire; Jérôme Mutterer; Bilal Camara

The accumulation of three major carotenoid derivatives—crocetin glycosides, picrocrocin, and safranal—is in large part responsible for the color, bitter taste, and aroma of saffron, which is obtained from the dried styles of Crocus. We have identified and functionally characterized the Crocus zeaxanthin 7,8(7′,8′)-cleavage dioxygenase gene (CsZCD), which codes for a chromoplast enzyme that initiates the biogenesis of these derivatives. The Crocus carotenoid 9,10(9′,10′)-cleavage dioxygenase gene (CsCCD) also has been cloned, and the comparison of substrate specificities between these two enzymes has shown that the CsCCD enzyme acts on a broader range of precursors. CsZCD expression is restricted to the style branch tissues and is enhanced under dehydration stress, whereas CsCCD is expressed constitutively in flower and leaf tissues irrespective of dehydration stress. Electron microscopy revealed that the accumulation of saffron metabolites is accompanied by the differentiation of amyloplasts and chromoplasts and by interactions between chromoplasts and the vacuole. Our data suggest that a stepwise sequence exists that involves the oxidative cleavage of zeaxanthin in chromoplasts followed by the sequestration of modified water-soluble derivatives into the central vacuole.


The Plant Cell | 1994

Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures.

Jean Deruère; Susanne Römer; Alain d'Harlingue; Ralph A. Backhaus; Marcel Kuntz; Bilal Camara

Chromoplast development in ripening bell pepper fruits is characterized by a massive synthesis of carotenoid pigments, resulting in their distinctive red color. We have shown that 95% of these pigments accumulate in chromoplasts in specific lipoprotein fibrils. In addition to carotenoids, purified fibrils contain galactolipids, phospholipids, and a single, 32-kD protein, designated fibrillin, which has antigenically related counterparts in other species. Fibrils were reconstituted in vitro when purified fibrillin was combined with carotenoids and polar lipids in the same stoichiometric ratio found in fibrils in vivo. Antibodies directed against fibrillin were used to isolate a fibrillin cDNA clone and, in immunological studies, to follow its accumulation during the chloroplast-to-chromoplast transition under different conditions. A model for fibril architecture is proposed wherein carotenoids accumulate in the center of the fibrils and are surrounded by a layer of polar lipids, which in turn are surrounded by an outer layer of fibrillin. Topological analysis of purified fibrils verified this structure. Collectively, these results suggest that the process of fibril self-assembly in chromoplasts is an example of a general phenomenon shared among cells that target excess membrane lipids into deposit structures to avoid their destabilizing or toxic effects. In addition, we have shown that abscisic acid stimulates this phenomenon in chromoplasts, whereas gibberellic acid and auxin delay it.


Journal of Biological Chemistry | 1996

Xanthophyll Biosynthesis CLONING, EXPRESSION, FUNCTIONAL RECONSTITUTION, AND REGULATION OF β-CYCLOHEXENYL CAROTENOID EPOXIDASE FROM PEPPER (CAPSICUM ANNUUM)

Florence Bouvier; Alain d'Harlingue; Philippe Hugueney; Elena Marin; Annie Marion-Poll; Bilal Camara

Pepper (Capsicum annuum) β-cyclohexenyl xanthophyll epoxidase cDNA was cloned and the corresponding enzyme overexpressed and purified from Escherichia coli, for investigation of its catalytic activity. The recombinant protein did not directly accept NADPH for epoxidation of cyclohexenyl carotenoids, nor did it operate according to a peroxygenase-based mechanism. Instead, the reducing power of NADPH was transferred to the epoxidase via reduced ferredoxin as shown by reconstitution of epoxidase activity in the presence of NADPH, ferredoxin oxidoreductase, and ferredoxin. Bacterial rubredoxin could be substituted for ferredoxin. The pepper epoxidase acted specifically on the β-ring of xanthophylls such as β-cryptoxanthin, zeaxanthin, and antheraxanthin. The proposed reaction mechanism for epoxidation involves the formation of a transient carbocation. This characteristic allows selective inhibition of the epoxidase activity by different nucleophilic diethylamine derivatives, p-dimethylaminobenzenediazonium fluoroborate and N,N-dimethyl-2-phenylaziridinium. It was also shown that the epoxidase gene was up-regulated during oxidative stress and when chloroplasts undergo differentiation into chromoplasts in pepper fruit.


International Review of Cytology-a Survey of Cell Biology | 1995

Biochemistry and Molecular Biology of Chromoplast Development

Bilal Camara; Philippe Hugueney; Florence Bouvier; Marcel Kuntz; René Monéger

Plant cells contain a unique class of organelles, designated the plastids, which distinguish them from animal cells. According to the largely accepted endosymbiotic theory of evolution, plastids are descendants of prokaryotes. This process requires several adaptative changes which involve the maintenance and the expression of part of the plastid genome, as well as the integration of the plastid activity to the cellular metabolism. This is illustrated by the diversity of plastids encountered in plant cells. For instance, in tissues undergoing color changes, i.e., flowers and fruits, the chromoplasts produce and accumulate excess carotenoids. In this paper we attempt to review the basic aspects of chromoplast development.


FEBS Letters | 2002

Metabolic engineering of xanthophyll content in tomato fruits

Sridhar Dharmapuri; Carlo Rosati; Patrizia Pallara; Riccardo Aquilani; Florence Bouvier; Bilal Camara; Giovanni Giuliano

Ripe tomato fruits accumulate significant amounts of the linear carotene lycopene, but only trace amounts of xanthophylls (oxygenated carotenoids). We overexpressed the lycopene β‐cyclase (b‐Lcy) and β‐carotene hydroxylase (b‐Chy) genes under the control of the fruit‐specific Pds promoter. Transgene and protein expression was followed through semi‐quantitative reverse transcription‐PCR, Western blotting, and enzyme assays. Fruits of the transformants showed a significant increase of β‐carotene, β‐cryptoxanthin and zeaxanthin. The carotenoid composition of leaves remained unaltered. The transgenes and the phenotype are inherited in a dominant Mendelian fashion. This is the first example of successful metabolic engineering of xanthophyll content in tomato fruits.


Biochimica et Biophysica Acta | 1998

Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.)

Florence Bouvier; Yves Keller; Alain d'Harlingue; Bilal Camara

To dissect the mechanism by which carotenoid hydroxylases catalyze xanthophyll formation, we have cloned two pepper cDNAs encoding beta-cryptoxanthin and zeaxanthin biosynthetic enzymes. Using an in vitro system, we find that both enzymes are ferredoxin dependent and that their activity is strongly inhibited by iron chelators such as o-phenanthroline or 8-hydroxyquinoline. This suggests the transfer of a reducing equivalent from NADPH to the hydroxylase via ferredoxin and the involvement of an iron activated oxygen insertion process. Based on sequence analysis, the putative histidine clusters involved in the iron coordination were identified and their roles evaluated. Following site-directed mutagenesis of the identified histidine residues hydroxylase activity was totally inactivated. Collectively, our data indicate that carotenoid hydroxylases belong to a new class of diiron proteins structurally related to membrane fatty acid desaturases. Mechanistically, both types of enzymes exploit iron activated oxygen to break the C-H bond with concomitant formation of double bond or oxygen insertion. We propose that the same mechanism operates for beta-carotene ketolase and probably for other carotenoid oxygenases as well.


Plant Physiology | 1996

Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits.

Philippe Hugueney; Florence Bouvier; Alfredo Badillo; Joelle Quennemet; Alain d'Harlingue; Bilal Camara

Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals.


The Plant Cell | 2006

Arabidopsis SAMT1 Defines a Plastid Transporter Regulating Plastid Biogenesis and Plant Development

Florence Bouvier; Nicole Linka; Jean-Charles Isner; Jérôme Mutterer; Andreas P. M. Weber; Bilal Camara

S-Adenosylmethionine (SAM) is formed exclusively in the cytosol but plays a major role in plastids; SAM can either act as a methyl donor for the biogenesis of small molecules such as prenyllipids and macromolecules or as a regulator of the synthesis of aspartate-derived amino acids. Because the biosynthesis of SAM is restricted to the cytosol, plastids require a SAM importer. However, this transporter has not yet been identified. Here, we report the molecular and functional characterization of an Arabidopsis thaliana gene designated SAM TRANSPORTER1 (SAMT1), which encodes a plastid metabolite transporter required for the import of SAM from the cytosol. Recombinant SAMT1 produced in yeast cells, when reconstituted into liposomes, mediated the counter-exchange of SAM with SAM and with S-adenosylhomocysteine, the by-product and inhibitor of transmethylation reactions using SAM. Insertional mutation in SAMT1 and virus-induced gene silencing of SAMT1 in Nicotiana benthamiana caused severe growth retardation in mutant plants. Impaired function of SAMT1 led to decreased accumulation of prenyllipids and mainly affected the chlorophyll pathway. Biochemical analysis suggests that the latter effect represents one prominent example of the multiple events triggered by undermethylation, when there is decreased SAM flux into plastids.


Plant Molecular Biology | 1998

The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper

Véronique Lefebvre; Marcel Kuntz; Bilal Camara; Alain Palloix

The red colour of pepper fruits is determined by the y+ dominant allele and the yellow colour by the y recessive allele. The capsanthin-capsorubin synthase (CCS) gene is activated specifically during the final stages of pepper fruit ripening. RFLP and specific-PCR polymorphisms derived from the CCS gene were analysed in a F2 progeny of a red by yellow-fruited cross. They cosegregated completely with fruit colour. Our results support the hypothesis that the yellow phenotype might result from a deletion of the CCS gene. These specific markers were integrated into the genetic map and will be useful for marker assisted plant breeding.


Planta | 1998

Sweet pepper plastids: enzymic equipment, characterisation of the plastidic oxidative pentose-phosphate pathway, and transport of phosphorylated intermediates across the envelope membrane

Erwin Thom; Torsten Möhlmann; W. Paul Quick; Bilal Camara; Horst-Ekkerhard Neuhaus

Abstract. Chloroplasts or chromoplasts were purified from sweet-pepper (Capsicum annuum L. cv. Yolo Wonder) fruits and analysed with respect to their enzymic equipment, the transport properties across the envelope membrane, and for the presence of a functional oxidative pentose-phosphate pathway (OPPP). It was demonstrated that both types of plastid contain enzyme activities that allow glycolysis and OPPP. During the developmental conversion from chloroplasts to chromoplasts the activities of enzymes catalysing potentially rate-limiting reactions in glycolysis increased considerably. Most enzyme activities involved in the plastidic OPPP stayed constant or decreased during ripening, but transaldolase activity increased by more than 500%. To analyse whether pepper fruit chromoplasts are able to use exogenously supplied carbohydrates for the OPPP we measured the rate of 14CO2 release after application of radioactively labelled precursors. Isolated pepper fruit chromoplasts used exogenously supplied [U14C]glucose- 6-phosphate (Glc6P) as a precursor for the OPPP. The metabolic flux through this pathway was stimulated by the presence of additional compounds which require reducing equivalents for further conversion, e.g. nitrite, or 2-oxoglutarate plus glutamine. The [14C]Glc6P-driven OPPP in isolated chromoplasts exhibited saturation with rising concentrations of Glc6P, reaching highest rates at an external concentration of about 2 mM. Exogenously given [U14C]glucose 1-phosphate (Glc1P)′ did not lead to a release of 14CO2, indicating that this hexose phosphate is not taken up into the intact plastid. Using a proteoliposome system in which the envelope membrane proteins from sweet-pepper chromoplasts were functionally reconstituted we demonstrated that Glc6P is transported in counter-exchange with inorganic phosphate (Pi) or other phosphorylated intermediates. The Glc6P was taken up into proteoliposomes with an apparent Km of 0.34 mM. Surprisingly, in contrast to tomato fruit plastids, isolated chromoplasts from sweet-pepper fruits do not possess a phosphate translocator allowing the uptake of Glc1P. Rising exogenous concentrations of dihydroxyacetone phosphate strongly inhibited the metabolic flux through the OPPP. This observation is discussed with respect to the presence of two phosphate translocator proteins in the envelope of sweet-pepper chromoplasts and with respect to possible metabolic changes occurring in heterotrophic tissues during development.

Collaboration


Dive into the Bilal Camara's collaboration.

Top Co-Authors

Avatar

Florence Bouvier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Rahier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Suire

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Samba Mialoundama

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Mutterer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge