Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Biljana Buzadzic is active.

Publication


Featured researches published by Biljana Buzadzic.


Free Radical Biology and Medicine | 1993

Effect of long-term exposure to cold on the antioxidant defense system in the rat

Mihajlo Spasić; Zorica S. Saičić; Biljana Buzadzic; Bato Korac; D Blagojevic; Vesna Petrović

Catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glutathione-S-transferase (GST) activities as well as glutathione (GSH), ascorbic acid (AsA), and vitamin E concentrations were analyzed in the blood, liver, brain, interscapular brown adipose tissue (IBAT), and small intestine of rats exposed to low environmental temperature (4 degrees C; 35, 75, and 105 d of exposure) and in controls of the same age exposed to an environmental temperature of 22 +/- 2 degrees C. Prolonged cold exposure resulted in an increase in GSH-Px in IBAT and in small intestine after 35, 75, and 105 d of exposure. Catalase activity in cold-exposed animals was higher in IBAT after 75 and 105 d of cold exposure. Glutathione reductase activity was greater in brain after 35 d, in liver after 75 d, and in IBAT after 105 d of exposure to low temperatures as compared to the controls. In contrast, GST activity was lower in liver and IBAT after 35 and 75 d of cold exposure. AsA and GSH (determined only 105 d after cold exposure) were markedly higher in IBAT, whereas plasma GSH was lower and plasma AsA was higher in cold-exposed animals. The observed changes in analysed components of the antioxidant defense system under conditions of prolonged exposure to low temperature suggest that a reorganization the activity of this system at the molecular level occurred. Although other studies indicate that a 21-d cold exposure is sufficient for adaptation of thermogenesis, the present study shows that in general, longer periods are required for the registration of the changes in the antioxidant defense system.


The Journal of Experimental Biology | 2005

The effects of L-arginine and L-NAME supplementation on redox-regulation and thermogenesis in interscapular brown adipose tissue

Vesna Petrović; Aleksandra Korac; Biljana Buzadzic; Bato Korac

SUMMARY Changes in inducible nitric oxide synthase (iNOS) protein levels and its relationship with the hyperplasia and uncoupling protein 1 (UCP1) levels were examined in interscapular brown adipose tissue (IBAT) of adult rat males receiving l-arginine (l-Arg; 2.25%) or N-nitro-l-arginine methyl ester (l-NAME; 0.01%) as a drinking liquid and maintained at low (4±1°C) or room (22±1°C) temperature for 45 days. Cold generally diminished both iNOS immunopositivity and protein level in IBAT, as well as the rate of apoptosis. Among groups acclimated to cold, higher iNOS immunopositivity and protein levels were detected only in the l-Arg-treated group. Furthermore, chronic l-Arg treatment increased IBAT mass and UCP1 protein content, while l-NAME had an opposite effect, decreasing both IBAT mass and UCP1 protein level, as compared to the control maintained at 4±1°C. These data suggest that nitric oxide (NO) produced by iNOS could also contribute to overall NO-associated regulation of thermogenesis in IBAT. Namely, that iNOS, i.e. NO, in correlation with enhanced thermogenesis, additionally induced IBAT hyperplasia and UCP1 level compared to that induced by low temperature. Cooperative action of decreased apoptosis accompanied by increased tissue hyperplasia and UCP1 level, observed in IBAT of cold-acclimated rats, would be a way of meeting the metabolic requirements for increased thermogenesis.


Redox biology | 2015

Redox implications in adipose tissue (dys)function—A new look at old acquaintances

Aleksandra Jankovic; Aleksandra Korac; Biljana Buzadzic; Vesna Otasevic; Ana Stancic; Andreas Daiber; Bato Korac

Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow.


Cellular Physiology and Biochemistry | 2012

Mitochondrial Molecular Basis of Sevoflurane and Propofol Cardioprotection in Patients Undergoing Aortic Valve Replacement with Cardiopulmonary Bypass

Miomir Jovic; Ana Stancic; Dragan Nenadic; Olivera Cekic; Dusko Nezic; Predrag Milojevic; Slobodan Micovic; Biljana Buzadzic; Aleksandra Korac; Vesna Otasevic; Aleksandra Jankovic; Milica Vucetic; Ksenija Velickovic; Igor Golic; Bato Korac

Background/Aims: Study elucidates and compares the mitochondrial bioenergetic-related molecular basis of sevoflurane and propofol cardioprotection during aortic valve replacement surgery due to aortic valve stenosis. Methods: Twenty-two patients were prospectively randomized in two groups regarding the anesthetic regime: sevoflurane and propofol. Hemodynamic parameters, biomarkers of cardiac injury and brain natriuretic peptide (BNP) were measured preoperatively and postoperatively. In tissue samples, taken from the interventricular septum, key mitochondrial molecules were determined by Western blot, real time PCR, as well as confocal microscopy and immunohisto- and immunocyto-chemical analysis. Results: The protein levels of cytochrome c oxidase and ATP synthase were higher in sevoflurane than in propofol group. Nevertheless, cytochrome c protein content was higher in propofol than sevoflurane receiving patients. Propofol group also showed higher protein level of connexin 43 (Cx43) than sevoflurane group. Besides, immunogold analysis showed its mitochondrial localization. The mRNA level of mtDNA and uncoupling protein (UCP2) were higher in propofol than sevoflurane patients, as well. On the other hand, there were no significant differences between groups in hemodynamic assessment, intensive care unit length of stay, troponin I and BNP level. Conclusions: Our data indicate that sevoflurane and propofol lead to cardiac protection via different mitochondrially related molecular mechanisms. It appears that sevoflurane acts regulating cytochrome c oxidase and ATP synthase, while the effects of propofol occur through regulation of cytochrome c, Cx43, mtDNA transcription and UCP2.


The Journal of Clinical Endocrinology and Metabolism | 2014

Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue.

Ksenija Velickovic; Aleksandra Cvoro; Biljana Srdic; Edita Stokic; Milica Markelic; Igor Golic; Vesna Otasevic; Ana Stancic; Aleksandra Jankovic; Milica Vucetic; Biljana Buzadzic; Bato Korac; Aleksandra Korac

CONTEXT Brown adipose tissue (BAT) has the unique ability of generating heat due to the expression of mitochondrial uncoupling protein 1 (UCP1). A recent discovery regarding functional BAT in adult humans has increased interest in the molecular pathways of BAT development and functionality. An important role for estrogen in white adipose tissue was shown, but the possible role of estrogen in human fetal BAT (fBAT) is unclear. OBJECTIVE The objective of this study was to determine whether human fBAT expresses estrogen receptor α (ERα) and ERβ. In addition, we examined their localization as well as their correlation with crucial proteins involved in BAT differentiation, proliferation, mitochondriogenesis and thermogenesis including peroxisome proliferator-activated receptor γ (PPARγ), proliferating cell nuclear antigen (PCNA), PPARγ-coactivator-1α (PGC-1α), and UCP1. DESIGN The fBAT was obtained from 4 human male fetuses aged 15, 17, 20, and 23 weeks gestation. ERα and ERβ expression was assessed using Western blotting, immunohistochemistry, and immunocytochemistry. Possible correlations with PPARγ, PCNA, PGC-1α, and UCP1 were examined by double immunofluorescence. RESULTS Both ERα and ERβ were expressed in human fBAT, with ERα being dominant. Unlike ERβ, which was present only in mature brown adipocytes, we detected ERα in mature adipocytes, preadipocytes, mesenchymal and endothelial cells. In addition, double immunofluorescence supported the notion that differentiation in fBAT probably involves ERα. Immunocytochemical analysis revealed mitochondrial localization of both receptors. CONCLUSION The expression of both ERα and ERβ in human fBAT suggests a role for estrogen in its development, primarily via ERα. In addition, our results indicate that fBAT mitochondria could be targeted by estrogens and pointed out the possible role of both ERs in mitochondriogenesis.


Free Radical Biology and Medicine | 2013

The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update.

Milica Vucetic; Ana Stancic; Vesna Otasevic; Aleksandra Jankovic; Aleksandra Korac; Milica Markelic; Ksenija Velickovic; Igor Golic; Biljana Buzadzic; Kenneth B. Storey; Bato Korac

Any alteration in oxidative metabolism is coupled with a corresponding response by an antioxidant defense (AD) in appropriate subcellular compartments. Seasonal hibernators pass through circannual metabolic adaptations that allow them to either maintain euthermy (cold acclimation) or enter winter torpor with body temperature falling to low values. The present study aimed to investigate the corresponding pattern of AD enzyme protein expressions associated with these strategies in the main tissues involved in whole animal energy homeostasis: brown and white adipose tissues (BAT and WAT, respectively), liver, and skeletal muscle. European ground squirrels (Spermophilus citellus) were exposed to low temperature (4 ± 1 °C) and then divided into two groups: (1) animals fell into torpor (hibernating group) and (2) animals stayed active and euthermic for 1, 3, 7, 12, or 21 days (cold-exposed group). We examined the effects of cold acclimation and hibernation on the tissue-dependent protein expression of four enzymes which catalyze the two-step detoxification of superoxide to water: superoxide dismutase 1 and 2 (SOD 1 and 2), catalase (CAT), and glutathione peroxidase (GSH-Px). The results showed that hibernation induced an increase of AD enzyme protein expressions in BAT and skeletal muscle. However, AD enzyme contents in liver were largely unaffected during torpor. Under these conditions, different WAT depots responded by elevating the amounts of specific enzymes, as follows: SOD 1 in retroperitoneal WAT, GSH-Px in gonadal WAT, and CAT in subcutaneous WAT. Similar perturbations of AD enzymes contents were seen in all tissues during cold acclimation, often in a time-dependent manner. It can be concluded that BAT and muscle AD capacity undergo the most dramatic changes during both cold acclimation and hibernation, while liver is relatively unaffected by either condition. Additionally, this study provides a basis for further metabolic study that will illuminate the causes of these tissue-specific AD responses, particularly the novel finding of distinct responses by different WAT depots in hibernators.


Biochimica et Biophysica Acta | 2011

Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα.

Milica Vucetic; Vesna Otasevic; Aleksandra Korac; Ana Stancic; Aleksandra Jankovic; Milica Markelic; Igor Golic; Ksenija Velickovic; Biljana Buzadzic; Bato Korac

BACKGROUND Brown adipose tissue thermogenic program includes complex molecular and structural changes. However, energetic aspects of this process are poorly depicted. METHODS We investigated time-dependent reprogramming of interscapular brown adipose tissue (IBAT) energy metabolism during cold-acclimation, as well as the effects of nitric oxide (()NO) on those changes. Rats were exposed to cold (4±1°C) for periods of 1, 3, 7, 12, 21, and 45days, and divided into three groups: control, treated with L-arginine, and treated with N(ω)-nitro-L-arginine methyl ester (L-NAME). RESULTS In the early phase of cold-acclimation (up to 7days), the protein levels of all metabolic parameters and oxidative phosphorylation components were below the control. However, metabolic parameters and respiratory chain components entered a new homeostatic level in the late phase of cold-acclimation. These changes were accompanied with increased protein levels of phospho-AMP-dependent protein kinase-α (phospho-AMPKα) on the first day of cold-acclimation, and hypoxia-inducible factor-1α (HIF-1α) throughout early cold-acclimation. L-arginine positively affected protein expression of enzymes involved in glucose metabolism and β-oxidation of fatty acids in the early phase of cold-acclimation, and oxidative phosphorylation components throughout cold-acclimation. In contrast, L-NAME had the opposite effects. CONCLUSION Results suggest that IBAT structural remodeling is followed by energy metabolism reprogramming, which control might be orchestrated by the action of AMPKα and HIF-1α. Data also indicated the involvement of L-arginine-()NO in the regulation of IBAT metabolism. GENERAL SIGNIFICANCE Results obtained in this study might be of great importance for elucidating regulatory pathways governing energy metabolism in both physiological and pathophysiological states.


Antioxidants & Redox Signaling | 2013

Is Manganese (II) Pentaazamacrocyclic Superoxide Dismutase Mimic Beneficial for Human Sperm Mitochondria Function and Motility

Vesna Otasevic; Aleksandra Korac; Milica Vucetic; Biljana Macanovic; Eliana Garalejic; Ivana Ivanović-Burmazović; Milos R. Filipovic; Biljana Buzadzic; Ana Stancic; Aleksandra Jankovic; Ksenija Velickovic; Igor Golic; Milica Markelic; Bato Korac

Mitochondria play an important role in sperm cell maturation and function. Here, we examined whether (and how) changes in sperm redox milieu affect the functional status of sperm mitochondria, that is, sperm functionality. Compared with the control, incubation in Tyrodes medium for 3 h, under noncapacitating conditions, decreased sperm motility, the amount of nitric oxide ((•)NO), the number of MitoTracker(®) Green FM (MT-G) positive mitochondria, and the expression of complexes I and IV of the mitochondrial respiratory chain. In turn, superoxide dismutase (SOD) mimic (M40403) treatment restored/increased these parameters, as well as the expression of endothelial nitric oxide synthase, manganese SOD, and catalase. These data lead to the hypothesis that M40403 improves mitochondrial functional state and motility of spermatozoa, as well as (•)NO might be involved in the observed effects of the mimic.


British Journal of Pharmacology | 2015

New insights into male (in)fertility: the importance of NO

Biljana Buzadzic; Milica Vucetic; Aleksandra Jankovic; Ana Stancic; Aleksandra Korac; Bato Korac; Vesna Otasevic

Infertility is a global problem that is on the rise, especially during the last decade. Currently, infertility affects approximately 10–15% of the population worldwide. The frequency and origin of different forms of infertility varies. It has been shown that reactive oxygen and nitrogen species (ROS and RNS) are involved in the aetiology of infertility, especially male infertility. Various strategies have been designed to remove or decrease the production of ROS and RNS in spermatozoa, in particular during in vitro fertilization. However, in recent years it has been shown that spermatozoa naturally produce a variety of ROS/RNS, including superoxide anion radical (O2⋅−), hydrogen peroxide and NO. These reactive species, in particular NO, are essential in regulating sperm capacitation and the acrosome reaction, two processes that need to be acquired by sperm in order to achieve fertilization potential. In addition, it has recently been shown that mitochondrial function is positively correlated with human sperm fertilization potential and quality and that NO and NO precursors increase sperm motility by increasing energy production in mitochondria. We will review the new link between sperm NO‐driven redox regulation and infertility herein. A special emphasis will be placed on the potential implementation of new redox‐active substances that modulate the content of NO in spermatozoa to increase fertility and promote conception.


European Journal of Histochemistry | 2011

Endothelial cell apoptosis in brown adipose tissue of rats induced by hyperinsulinaemia: the possible role of TNF-α

Milica Markelic; Ksenija Velickovic; Igor Golic; Vesna Otasevic; Ana Stancic; Aleksandra Jankovic; Milica Vucetic; Biljana Buzadzic; Bato Korac; Aleksandra Korac

The aim of the present study was to investigate whether hyperinsulinaemia, which frequently precedes insulin resistance syndrome (obesity, diabetes), induces apoptosis of endothelial cells (ECs) in brown adipose tissue (BAT) and causes BAT atrophy and also, to investigate the possible mechanisms underlying ECs death. In order to induce hyperinsuli-naemia, adult male rats of Wistar strain were treated with high dose of insulin (4 U/kg, intraperitonely) for one or three days. Examinations at ultrastructural level showed apoptotic changes of ECs, allowing us to point out that changes mainly but not exclusively, occur in nuclei. Besides different stages of condensation and alterations of the chromatin, nuclear fragmentation was also observed. Higher number of ECs apoptotic nuclei in the BAT of hyperinsulinaemic rats was also confirmed by propidium iodide staining. Immunohistochemical localization of tumor necrosis factor-alpha (TNF-α) revealed increased expression in ECs of BAT of hyperinsulinaemic animals, indicating its possible role in insulin-induced apoptotic changes. These results suggest that BAT atrophy in hyperinsulinaemia is a result of endothelial and adipocyte apoptosis combined, rather than any of functional components alone.

Collaboration


Dive into the Biljana Buzadzic's collaboration.

Top Co-Authors

Avatar

Bato Korac

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Stancic

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Golic

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge