Biljana Jocić
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biljana Jocić.
Journal of Pharmaceutical and Biomedical Analysis | 2008
Ljiljana Živanović; Ana Ličanski; Mira Zečević; Biljana Jocić; Mirjana Kostić
The aim of this study was to develop and optimize a solid phase extraction (SPE) procedure for purification of mycophenolic acid (MPA) and its metabolite mycophenolic acid glucuronide (MPAG) in biological samples. During optimization process chemometric approach was applied. First, in screening experiments fractional factorial design (FFD) was used for selecting the variables which affected the extraction procedure. The ionic strength of the phosphate buffer in the washing step and the percentage of acetonitrile in the elution step were statistically significant for the recovery of MPAG while the percentage of acetonitrile and pH of the washing solution were statistically significant for that of MPA. Afterwards, the significant variables were optimized using central composite design (CCD). The developed SPE method included phosphate buffer (pH 2.4; 0.056 M) in the washing step, and the mixture of acetonitrile and phosphate buffer of which pH was adjusted to 2.4 (70:30, v/v) in the elution step. The investigation was applied to both urine and plasma and the nature of biological matrix appeared to be of no importance. The extraction from both matrixes showed good repeatability with relative standard deviations up to 6% for MPAG and 8% for MPA, and recovery around 100% for both substances. Furthermore, new SPE-RP-HPLC method for determination of MPA and MPAG in both humane urine and plasma has been validated. The great advantage of this method is the chromatographic run of only 3 min.
Journal of Pharmaceutical and Biomedical Analysis | 2009
Biljana Jocić; Mira Zečević; Ljiljana Živanović; Ana Protić; Milka Jadranin; Vlatka Vajs
The objective of the present study was to report the stability profile of novel antimigrain drug Eletriptan hydrobromide based on the information obtained from forced degradation studies. The drug was subjected to acid (0.1-1 mol L(-1) HCl), neutral and base (0.1-1 mol L(-1) NaOH) hydrolysis and to oxidative decomposition (3-15% (v/v) H(2)O(2)). Photolysis and thermo degradation at 75 degrees C were carried out in methanol solution and in solid state with both Eletriptan hydrobromide bulk drug and the tablet formulation. The products formed under different stress conditions were investigated by LC and LC-MS. The experimental conditions for LC were chosen by employing experimental design and multicriteria decision making methodology. These powerful tools enabled the accomplishment of satisfactory resolution with the shortest possible analysis time. Analytes were separated on a C(18) column (XTerra, 150 mm x 3.9 mm, 5 microm) with the mobile phase composed of methanol-water solution of TEA (pH 6.52, 1%, v/v) (30:70, v/v) pumped at 1 mL min(-1) flow rate. The column temperature was set at 50 degrees C and the detection at 225 nm using DAD detector. The LC method was suitably modified for LC-MS analysis which was further used to characterize the arisen degradation products. The possible degradation pathway was outlined based on the results. The drug appeared to be instable towards every stress condition but oxidation. The stability was not jeopardized even under more exaggerated conditions such as increased temperature of the solutions to 75 degrees C, increased strength of acid/alkali solutions and prolonged testing period. Validation of the LC-DAD method was carried out in accordance with ICH guideline. The method met all required criteria and was applied when testing the commercially available tablets.
Journal of Pharmaceutical and Biomedical Analysis | 2009
Ljiljana Živanović; Ana Protić; Mira Zečević; Biljana Jocić; Mirjana Kostić
Multicriteria optimization methodology was applied for development of isocratic reversed-phased HPLC method for simultaneous determination of mycophenolic acid (MPA) and mycophenolic acid glucuronide (MPAG) in human urine and plasma. In the first stage of method development, pH value of the water phase, percentage of acetonitrile, temperature of the column and flow rate of the mobile phase were investigated using fractional factorial design. Afterwards, the optimal conditions were found employing central composite design and Derringers desirability function. Two goals were considered, the retention factor of the MPAG to be in the range, between 0.8 and 1.118 which allowed well separation of MPAG from the urine and plasma peaks, and the shortest possible total analysis run time. Then, the obtained sigmoid functions were used to transform the optimization criteria into the desirability values. The satisfactory chromatographic conditions were obtained with mobile phase consisted of acetonitrile-phosphate buffer (pH 2.4; 0.04 M KH(2)PO(4)) (28:72, v/v). The separation was performed on C(18) Chromolith column (100 mm x 4.6 mm) with flow rate of 5 mL/min, the temperature of the column was 25 degrees C and the chosen wavelength for simultaneous determination of MPA and MPAG was 215 nm. The MPAG eluted at 0.552 min and the duration of run was 3.092 min. Afterwards, the method was subjected to validation. Linearity was observed over the concentration range of 1-50 microg/mL for MPA and 1-500 microg/mL for MPAG in urine and 1-60 microg/mL for MPA and 1-70 microg/mL for MPAG in plasma matrix. The method showed intra-day and inter-day precision with relative standard deviation lower then 5% and accuracy as recovery (%) between 100+/-5%.
Journal of The Serbian Chemical Society | 2006
Mira Zečević; Biljana Jocić; Snezana Agatonovic-Kustrin; Ljiljana Zivanovic
Arapid and sensitive RPHPLCmethod was developed for the routine control analysis of eletriptan hydrobromide and its organic impurity UK 120.413 in Relpax® tablets. The chromatography was performed at 20°C using a C18 XTerra ™ (5 µm, 150 x 4,6 mm) column at a flow rate 1.0 ml/min. The drug and its impurity were detected at 225 nm. The mobile phase consisted of TEA (1 %) - methanol (67.2:32.8 v/v), the pH of which was adjusted to 6.8 with 85 % orthophosphoric acid. Quantification was accomplished by the internal standard method. The developed RP HPLC method was validated by testing: accuracy, precision, repeatability, specificity, detection limit, quantification limit, linearity, robustness and sensitivity. High linearity of the analytical procedure was confirmed over the concentration range of 0.05 - 1.00 mg/ml for eletriptan hydrobromide and from 0.10 - 1.50 µg/ml for UK 120.413, with correlation coefficients greater than r = 0.995. The low value of the RSD expressed the good repeatability and precision of the method. Experimental design and a response surface method were used to test robustness of the analytical procedure and to evaluate the effect of variation of the method parameters, namely the mobile phase composition, pH and temperature. They showed small deviations from the method setting. The good recovery and low RSD confirm the suitability of the proposed RP HPLC method for the routine determination of eletriptan hydrobromide and its impurity UK 120.413 in Relpax® tables.
Talanta | 2008
Mara M. Aleksić; Vera Kapetanović; Jasmina Atanacković; Biljana Jocić; Mira Zečević
Two rapid, accurate and sensitive methods are developed and validated for the quantitative simultaneous determination of cefotaxime (CFX) and its active metabolite desacetylcefotaxime (DCFX) in urine. Based on the previous results which showed the four electron reduction of CFX at approximately -0.5 V, and the new findings that DCFX reduction occurred at more positive potential (-0.23 V), the new adsorptive stripping differential pulse voltammetric (AdSDPV) method was developed for determination of CFX in the presence of DCFX. Linear responses were observed over a wide concentration range (0.07-0.52 microg/ml for CFX and 0.22-1.3 microg/ml for DCFX) in urine. The second assay involves subsequent separation on a reversed-phase HPLC column, with ultraviolet detection at 262 nm. Retention times were 4.057 and 1.960 min for CFX and DCFX, respectively. Linear responses were observed over a wide range, 0.55-6.60 microg/ml for CFX and 1.10-11.00 microg/ml for DCFX, in urine. The statistical evaluation for both methods was examined by means of within-day repeatability (n=5) and day-to-day precision (n=3) and was found to be satisfactory with high accuracy and precision.
Analytical Letters | 2007
Biljana Jocić; Mira Zečević; Lj. Živanović; A. Ličanski
Abstract An isocratic reversed‐phase high‐performance liquid chromatographic method was developed and validated for the analysis of a novel antimigraine drug, rizatriptan benzoate, in a dosage form along with its two impurities, L‐749.019 and L‐783.540. The method used a C18 XTerra™ (150×3.9 mm), 5 µm column. The mobile phase consisted of a mixture of methanol, TEA (1%) and 10 mM KH2PO4 (5:9.5:85.5 v/v) at a flow rate of 1.2 ml min−1 (pH of the water phase was adjusted to 5.5 with 85% orthophosphoric acid). Column temperature was 20°C and the detection was performed at 225 nm. The central composite design technique and the response surface method were used in the robustness test considerations. The method was applied satisfactorily to the analysis of commercial rizatriptan formulation.
Chromatographia | 2008
Mira Zečević; Biljana Jocić; Ljiljana Živanović; Ana Protić
Journal of Chromatography A | 2006
Mira Zečević; Ž. Stanković; Lj. Živanović; Biljana Jocić
Journal of Chromatographic Science | 2009
Ana Protić; Lj. Živanović; Mira Zečević; Biljana Jocić
Chromatographia | 2009
Predrag Džodić; Ljiljana Živanović; Ana Protić; Mira Zečević; Biljana Jocić