Biljana Musicki
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biljana Musicki.
Proceedings of the National Academy of Sciences of the United States of America | 2002
K. Joseph Hurt; Biljana Musicki; Michael A. Palese; Julie K. Crone; Robyn E. Becker; John L. Moriarity; Solomon H. Snyder; Arthur L. Burnett
In the penis, nitric oxide (NO) can be formed by both neuronal NO synthase and endothelial NOS (eNOS). eNOS is activated by viscous drag/shear stress in blood vessels to produce NO continuously, a process mediated by the phosphatidylinositol 3-kinase (PI3kinase)/Akt pathway. Here we show that PI3-kinase/Akt physiologically mediates erection. Both electrical stimulation of the cavernous nerve and direct intracavernosal injection of the vasorelaxant drug papaverine cause rapid increases in phosphorylated (activated) Akt and eNOS. Phosphorylation is diminished by wortmannin and LY294002, inhibitors of PI3-kinase, the upstream activator of Akt. The two drugs also reduce erection. Penile erection elicited by papaverine is reduced profoundly in mice with targeted deletion of eNOS. Our findings support a model in which rapid, brief activation of neuronal NOS initiates the erectile process, whereas PI3-kinase/Akt-dependent phosphorylation and activation of eNOS leads to sustained NO production and maximal erection.
International Journal of Impotence Research | 2007
Biljana Musicki; Arthur L. Burnett
Erectile dysfunction (ED) is highly prevalent in diabetes mellitus. Pathophysiological mechanisms underlying diabetes-associated ED are in large part due to endothelial dysfunction, which functionally refers to the inability of the endothelium to produce vasorelaxing messengers and to maintain vasodilation and vascular homeostasis. The precise mechanisms leading to endothelial dysfunction in the diabetic vasculature, including the penis, are not yet fully understood. Hyperglycemia affects endothelial nitric oxide synthase activity and nitric oxide production/bioavailability, nitric oxide-independent relaxing factors, oxidative stress, production and/or action of hormones, growth factors and/or cytokines, and generation and activity of opposing vasoconstrictors. Considering recent advances in the field of vascular biology and diabetes, the emphasis in this review is placed on the mechanisms of hyperglycemia-induced endothelial dysfunction in the pathophysiology of diabetes-associated ED.
Experimental Biology and Medicine | 2006
Biljana Musicki; Arthur L. Burnett
Endothelial nitric oxide (NO) synthase (eNOS) has an indispensable role in the erectile response. In the penis, eNOS activity and endothelial NO bioavailability are regulated by multiple post-translatlonal molecular mechanisms, such as eNOS phosphorylation, eNOS interaction with regulatory proteins and contractile pathways, and actions of reactive oxygen species (ROS). These mechanisms regulate eNOS-mediated responses under physiologic circumstances and provide various mechanisms whereby endothelial NO availability may be altered in states of vasculogenlc erectile dysfunction (ED), in view of the recent advances in the field of eNOS function in the penis and its role in penile erection, the emphasis in this review is placed on the mechanisms regulating eNOS activity and its interaction with the RhoA/Rho-kinase pathway in the physiology of penile erection and the pathophysiology of ED.
The Journal of Sexual Medicine | 2010
Biljana Musicki; Tongyun Liu; Gwen A. Lagoda; Travis D. Strong; Sena F. Sezen; Justin M. Johnson; Arthur L. Burnett
INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)-null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES The main outcome measures are the molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared with WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67(phox) , p47(phox) and gp91(phox) , eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P<0.05) the abnormalities in protein expressions of gp67(phox) and gp47(phox) , 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED.
Biology of Reproduction | 2004
Biljana Musicki; Michael A. Palese; Julie K. Crone; Arthur L. Burnett
Abstract The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS−/−) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS−/− mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (109 particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS−/− mice and only partially recovered erectile function in castrated eNOS−/− mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.
Proceedings of the National Academy of Sciences of the United States of America | 2012
K. Joseph Hurt; Sena F. Sezen; Gwen Lagoda; Biljana Musicki; Gerald A. Rameau; Solomon H. Snyder; Arthur L. Burnett
Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor l-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction.
The Journal of Sexual Medicine | 2009
Trinity J. Bivalacqua; Biljana Musicki; Lewis L. Hsu; Mark T. Gladwin; Arthur L. Burnett; Hunter C. Champion
INTRODUCTION Priapism is a poorly understood disease process with little information on the etiology and pathophysiology of this erectile disorder. One group of patients with a high prevalence of priapism is men with sickle-cell disease. AIM Establish an in vivo transgenic sickle-cell mouse model to study the pathophysiology of sickle-cell disease-associated priapism. METHODS Transgenic sickle-cell disease mice, expressing human sickle hemoglobin, were utilized. Three groups of mice were used: (i) wild type (WT), (ii) sickle-cell heterozygotes (Hemi), and (ii) sickle-cell homozygotes (Sickle). Two age groups of each cohort of mice were utilized: young adult (4-6 months) and aged (18-22 months). MAIN OUTCOME MEASURES Histological (trichrome stain to measure ratio of collagen to smooth muscle), penile hydroxyproline content (collagen content), and transmission electron microscopic analysis of WT, Hemi, and Sickle mice penes, as well as in vivo erectile responses [change in intracavernous pressure (ICP)] to cavernous nerve stimulation (CNS), were determined. The frequency of erectile responses (erections/hour) pre- and poststimulation was also measured in each of the experimental groups. RESULTS Sickle mice had increased (P < 0.05) collagen to smooth muscle ratio and hydroxyproline content in the penis when compared with WT and Hemi mice penes. Transmission electron microscopy demonstrated thickened smooth muscle cell bundles, disruption of the endothelial lining of the corporal sinusoids, and increased (P < 0.05) caveolae number. Sickle mice had significantly (P < 0.05) higher ICP to CNS and increased (P < 0.05) frequency of erections pre- and post-CNS when compared with WT and Hemi mice erectile responses. Sickle mice did develop ED (change in ICP in response to CNS) with increasing age. CONCLUSION The morphometric changes of the penis and exaggerated in vivo erectile responses support the use of this transgenic sickle-cell disease animal model to study the pathophysiological mechanisms involved in sickle-cell disease-associated priapism.
The Journal of Sexual Medicine | 2012
Trinity J. Bivalacqua; Biljana Musicki; Omer Kutlu; Arthur L. Burnett
INTRODUCTION Priapism is defined as an erectile disorder, in which erection persists uncontrollably without sexual purpose. The precise mechanisms involved in the development of sickle cell disease-associated priapism are ill defined. AIM To summarize the recent developments that increase our understanding of the molecular mechanisms of priapism. METHODS This article reviews the literature (Medline search 2000-2010) that relates the key molecular signaling pathways that contribute to the development of priapism associated with sickle-cell disease. It focuses on basic science investigations using multiple animal models. MAIN OUTCOME MEASURES The reader will be informed of the most current research regarding the role of endothelial nitric oxide synthase, phosphodiesterase type 5 (PDE5), adenosine, RhoA/Rho-kinase (ROCK), and opiorphins in the pathophysiology of priapism. RESULTS New concepts in the field of priapism research suggest that priapism often results from altered vascular homeostatic actions in the penis and is associated with deficient erection control mechanisms on a molecular level. A leading proposal in this regard is the notion of aberrant signaling of the endothelium-derived nitric oxide and PDE5 signal transduction pathway in the penis. Additionally, dysfunctional regulatory control of signal transduction systems which interact with this pathway such as adenosine and RhoA/Rho-kinase may contribute to the development of priapism. Recent investigations of opiorphins also demonstrate a role in regulating corporal smooth muscle tone and thereby dysregulation of erection physiology in priapism. These advances have paved the way for understanding this disorder as having a molecular pathogenesis. CONCLUSIONS As the science underlying priapism further emerges, increasingly effective therapeutics for sickle cell disease-associated priapism is certain to follow.
The Journal of Urology | 2009
Arthur L. Burnett; Travis D. Strong; Bruce J. Trock; Liming Jin; Trinity J. Bivalacqua; Biljana Musicki
PURPOSE We investigated changes in serum biomarkers of vascular function after short-term, continuous sildenafil dosing in men with type 2 diabetes with erectile dysfunction. MATERIALS AND METHODS Men with erectile dysfunction associated with type 2 diabetes mellitus were randomized to receive continuous, daily sildenafil (50 mg for 1 week run-in and 100 mg for 3 weeks) (148), or placebo (144) for 4 weeks (phase I) and then sildenafil (25, 50 or 100 mg) on demand for 12 weeks (phase II). Blood draws at baseline and after phases I and II were analyzed for cyclic guanosine monophosphate (endothelial function marker), 8-isoprostane (oxidative stress marker), and interleukin-6 and interleukin-8 (inflammatory cytokines). Primary and secondary erectile function outcome variables were affirmative responses on Sexual Encounter Profile question 3 (ability to maintain erection sufficient for sexual intercourse) and Erection Hardness Score, respectively. RESULTS Serum cyclic guanosine monophosphate levels were increased in the sildenafil group relative to the placebo group at 4 (p <0.01) and 16 (p <0.05) weeks, correlating with affirmative responses to Sexual Encounter Profile question 3 at the 4-week interval only (p <0.05). Serum 8-isoprostane levels were decreased to a nonsignificant degree in the sildenafil group at 4 weeks with no further change at 16 weeks, whereas interleukin-6 and interleukin-8 levels were unchanged at either interval, and these levels were unassociated with erectile function outcomes. CONCLUSIONS These data suggest that short-term, continuous sildenafil treatment causes systemic endothelial function to be enhanced and remain so for a duration after its discontinuation. However, they do not indicate any influence of this treatment on systemic oxidative stress or inflammation, or an effect on long-term erectile function improvement.
Reproductive Medicine Review | 1993
Harold R. Behrman; Toshiaki Endo; Raymond F. Aten; Biljana Musicki
Several conclusions can be drawn from a review of the formation, function and regression of the corpus luteum. Ovulation and luteinization encompass degenerative and growth changes. Inflammatory conditions associated with ovulation lead to the breakdown of the follicle wall and the membrana granulosa, along with initial damage to theca and granulosa cells. The early corpus luteum is, therefore, a tissue in stress. Thus, one view of the corpus luteum is that it, like the phoenix, rises from the inflammatory ashes of the postovulatory follicle to exist briefly and to be consumed by a similar process at regression. The luteinization process is associated with parenchymal cell hypertrophy and matrix remodelling, which appear to be regulated by IGFs and androgens, and with angiogenesis, which is induced mostly by bFGF. High levels of functional activity of the corpus luteum are regulated by control at the level of the LH receptor, whose activation leads to the translocation of cholesterol into the cell and mitochondria for conversion to steroids. Functional luteal regression can be considered as another inflammatory-like condition with apparent activation of the immune system, along with cytokine, reactive oxygen, and eicosanoid production. Structural luteolysis is subsequently invoked that leads to matrix dissolution and cellular degeneration. It is perhaps not surprising that the invocation of immune activation, which causes the production of DNA-damaging reactive oxygen species and cytotoxic cytokines each cycle, may increase the risk of pathologies. One example may be ovarian cancer which appears to be associated with the use of fertility-enhancing drugs and associated with the number of ovulations in a womans lifetime.