Biljana Spremo-Potparevic
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biljana Spremo-Potparevic.
Neuropathology and Applied Neurobiology | 2010
David J. Bonda; Vladan Bajic; Biljana Spremo-Potparevic; Gemma Casadesus; X. Zhu; Mark A. Smith; Hyoung-gon Lee
D. J. Bonda, V. P. Bajić, B. Spremo‐Potparevic, G. Casadesus, X. Zhu, M. A. Smith and H.‐G. Lee (2010) Neuropathology and Applied Neurobiology36, 157–163 Cell cycle aberrations and neurodegeneration
Experimental Gerontology | 2004
Biljana Spremo-Potparevic; Lada Zivkovic; Ninoslav Djelic; Vladan Bajic
Cytogenetic analysis of the X chromosome in phytohaemagglutinin stimulated peripheral blood lymphocytes was evaluated in 12 sporadic Alzheimer disease (AD) patients and in 11 healthy subjects. For chromosome analysis two methods were used: (1) standard analysis of G-banded metaphase chromosomes and; (2) fluorescent in situ hybridization (FISH) for the detection of the X chromosome centromeric region in interphase nuclei. Cytogenetic analysis revealed that the X chromosome expresses premature centromere division (PCD) in AD females in 10.53% of metaphase cells and in 15.22% of interphase nuclei. In AD men the percentages were 3.98 and 6.06%, respectively. X chromosome PCD in the female control group showed a percentage of 7.46% in metaphase cells and 9.35% in interphase nuclei and in male controls the percentages were 2.84% in metaphases and 5.54% in interphase nuclei. The results of FISH analysis showed that PCD could occur much earlier than metaphase of mitosis, i.e. in interphase of the cell cycle, immediately after replication. The FISH method can be used for PCD verification in all phases of the cell cycle in various disorders including AD.
Mechanisms of Ageing and Development | 2006
Lada Živković; Biljana Spremo-Potparevic; Ninoslav Djelic; Vladan Bajic
Premature centromere division (PCD) of the chromosome 18 was analyzed by using fluorescent in situ hybridization (FISH) on interphase peripheral blood lymphocytes isolated from six sporadic Alzheimer disease (AD) patients and six healthy elderly controls. Results of FISH analysis revealed that chromosome 18 expressed PCD in 5.18% interphase nuclei of AD patients, and in 2.59% interphase nuclei of age-matched controls (p<0.05). Our study also showed that hypoploidy and hyperploidy frequency for chromosome 18 exhibited a statistically significant increase in the AD group compared to the control one. The increase in spontaneous aneuploidy of chromosome 18 in AD patients which is correlated with PCD shows that deregulation of the time of centromere separation can be considered as a manifestation of chromosome instability leading to aneuploidy.
Toxicology in Vitro | 2014
Andrea Čabarkapa; Lada Živković; Dijana Žukovec; Ninoslav Djelic; Vladan Bajic; Dragana Dekanski; Biljana Spremo-Potparevic
Excessive release of stress hormone adrenaline is accompanied by generation of reactive oxygen species which may cause disruption of DNA integrity leading to cancer and age-related disorders. Phenolic-rich plant product dry olive leaf extract (DOLE) is known to modulate effects of various oxidants in human cells. The aim was to evaluate the effect of commercial DOLE against adrenaline induced DNA damage in human leukocytes by using comet assay. Peripheral blood leukocytes from 6 healthy subjects were treated in vitro with three final concentrations of DOLE (0.125, 0.5, and 1mg/mL) for 30 min at 37°C under two different protocols, pretreatment and post-treatment. Protective effect of DOLE was assessed from its ability to attenuate formation of DNA lesions induced by adrenaline. Compared to cells exposed only to adrenaline, DOLE displayed significant reduction (P<0.001) of DNA damage at all three concentrations and under both experimental protocols. Pearson correlation analysis revealed a significant positive association between DOLE concentration and leukocytes DNA damage (P<0.05). Antigenotoxic effect of the extract was more pronounced at smaller concentrations. Post-treatment with 0.125 mg/mL DOLE was the most effective against adrenaline genotoxicity. Results indicate genoprotective and antioxidant properties in dry olive leaf extract, strongly supporting further explorations of its underlying mechanisms of action.
Cellular & Molecular Biology Letters | 2011
Vladan Bajic; Bo Su; Hyoung Gon Lee; Wataru Kudo; Lada Živković; Biljana Spremo-Potparevic; Ninoslav Djelic; Zorana Milicevic; Avneet Singh; Lara M. Fahmy; Xinglong Wang; Mark A. Smith; Xiongwei Zhu
Post-mitotic neurons are typically terminally differentiated and in a quiescent status. However, in Alzheimer disease (AD), many neurons display ectopic re-expression of cell cycle-related proteins. Cyclin-dependent kinase 11 (CDK11) mRNA produces a 110-kDa protein (CDK11p110) throughout the cell cycle, a 58-kDa protein (CDK11p58) that is specifically translated from an internal ribosome entry site and expressed only in the G2/M phase of the cell cycle, and a 46-kDa protein (CDK11p46) that is considered to be apoptosis specific. CDK11 is required for sister chromatid cohesion and the completion of mitosis. In this study, we found that the expression patterns of CDK11 vary such that cytoplasmic CDK11 is increased in AD cellular processes, compared to a pronounced nuclear expression pattern in most controls. We also investigated the effect of amyloid precursor protein (APP) on CDK11 expression in vitro by using M17 cells overexpressing wild-type APP and APP Swedish mutant phenotype and found increased CDK11 expression compared to empty vector. In addition, amyloid-β25–35 resulted in increased CDK11 in M17 cells. These data suggest that CDK11 may play a vital role in cell cycle re-entry in AD neurons in an APP-dependent manner, thus presenting an intriguing novel function of the APP signaling pathway in AD.
Medical Hypotheses | 2009
Vladan Bajic; Biljana Spremo-Potparevic; Lada Živković; David J. Bonda; Gemma Casadesus; Hyoung Gon Lee; Mark A. Smith
Premature centromere division, or premature centromere separation (PCS), occurs when chromatid separation is dysfunctional, occurring earlier than usual during the interphase stage of mitosis. This phenomenon, seen in Roberts syndrome and various cancers, has also been documented in peripheral as well as neuronal cells of Alzheimers disease (AD). In the latter instances, fluorescent in situ hybridization (FISH), applied to the centromere region of the X-chromosome in interphase nuclei of lymphocytes from peripheral blood in AD patients, demonstrated premature chromosomal separation before mitotic metaphase directly after completion of DNA replication in G(2) phase of the cell cycle. Furthermore, and perhaps unexpectedly given the presumptive post-mitotic status of terminally differentiated neurons, neurons in AD patients also showed significantly increased levels of PCS of the X-chromosome. Taken together with other phenomena such as cell cycle re-activation and ectopic re-expression of cyclins and cyclin dependent proteins, we propose that AD is an oncogenic phenotype leading to accelerated aging of the affected brain.
Neurodegenerative Diseases | 2013
Lada Živković; Biljana Spremo-Potparevic; George Perry; Bosiljka Plećaš-Solarović; Zorana Milicevic; Vladan Bajic
While Alzheimer disease (AD) is considered a neurodegenerative disorder, the importance of chromosome instability in non-neuronal cells is equally important, not only for shedding light on the etiology of the disease, but also for possible diagnostic purposes and monitoring the progress of the disease. Here, we evaluated the frequency of DNA damage and expression of premature centromere division (PCD) in peripheral blood lymphocytes of sporadic AD patients, age-matched and young controls. The results show that in male patients with AD, the frequencies of PCD and DNA damage were significantly greater (88%, p < 0.01 and 38%, p < 0.05, respectively) than in age-matched control group. AD females had significantly increased frequency of PCD (134%, p < 0.01) as well as a higher frequency of DNA damage (37%, p < 0.05). Ageing per se, both in males and females, shows significant increase of percentages of PCD (2.3 times, p < 0.01 and 2.8 times, p < 0.01, respectively) and DNA damage (63%, p < 0.01 and 50%, p < 0.01, respectively) comparing with young controls. In addition, a strong (R2 = 0.873, n = 6) and significant (p < 0.01) correlation between the frequencies of PCD and DNA damage was found in all examined groups. We may conclude that the increases in both parameters evaluated in this study are not only associated with normal ageing processes, but are markedly and significantly intensified in AD pathogenesis. Thus, our data support the view that AD is a generalized systemic disease, at least as for the increased DNA damage and PCD incidence in peripheral blood cells.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2010
Lada Živković; Biljana Spremo-Potparevic; Bosiljka Plećaš-Solarović; Ninoslav Djelic; Gordana Ocić; Predrag Smiljković; Mark A. Smith; Vladan Bajic
Chromosomal alterations are a feature of both aging and Alzheimers disease (AD). This study examined if premature centromere division (PCD), a chromosomal instability indicator increased in AD, is correlated with aging or, instead, represents a de novo chromosomal alteration due to accelerating aging in AD. PCD in peripheral blood lymphocytes was determined in sporadic AD patients and gender and age-matched unaffected controls. Metaphase nuclei were analyzed for chromosomes showing PCD, X chromosomes with PCD (PCD,X), and acrocentric chromosomes showing PCD. AD patients, regardless of age, demonstrated increased PCD on any chromosome and PCD on acrocentric chromosomes in both genders, whereas an increase in frequency of PCD,X was expressed only in women. This cytogenetic analysis suggests that PCD is a feature of AD, rather than an epiphenomenon of chronological aging, and may be useful as a physiological biomarker that can be used for disease diagnosis.
The Scientific World Journal | 2015
Aleksandar Knežević; Lada Živković; Mirjana Stajic; Jelena Vukojević; Ivan Milovanović; Biljana Spremo-Potparevic
Trametes species have been used for thousands of years in traditional and conventional medicine for the treatment of various types of diseases. The goal was to evaluate possible antigenotoxic effects of mycelium and basidiocarp extracts of selected Trametes species and to assess dependence on their antioxidant potential. Trametes versicolor, T. hirsuta, and T. gibbosa were the species studied. Antigenotoxic potentials of extracts were assessed on human peripheral white blood cells with basidiocarp and mycelium extracts of the species. The alkaline comet test was used for detection of DNA strand breaks and alkali-labile sites, as well as the extent of DNA migration. DPPH assay was used to estimate antioxidative properties of extracts. Fruiting body extracts of T. versicolor and T. gibbosa as well as T. hirsuta extracts, except that at 20.0 mg/mL, were not genotoxic agents. T. versicolor extract had at 5.0 mg/mL the greatest antigenotoxic effect in both pre- and posttreatment of leukocytes. The mycelium extracts of the three species had no genotoxic activity and significant antigenotoxic effect against H2O2-induced DNA damage, both in pre- and posttreatment. The results suggest that extracts of these three species could be considered as strong antigenotoxic agents able to stimulate genoprotective response of cells.
The Scientific World Journal | 2014
Zorka Milićević; Vladan Bajic; Lada Živković; Jelena Kasapović; Uroš Andjelković; Biljana Spremo-Potparevic
In breast carcinoma, disruption of the p53 pathway is one of the most common genetic alterations. The observation that the p53 can express multiple protein isoforms adds a novel level of complexity to the outcome of p53 mutations. p53 expression was analysed by Western immunoblotting and immunohistochemistry using monoclonal antibodies DO-7, Pab240, and polyclonal antiserum CM-1. The more frequently p53-positive nuclear staining has been found in the invasive breast tumors. One of the most intriguing findings is that mutant p53 appears as discrete dot-shaped regions within the nucleus of breast cancer cells. In many malignant cells, the nucleolar sequestration of p53 is evident. These observations support the view that the nucleolus is involved directly in the mediation of p53 function or indirectly by the control of the localization of p53 interplayers. p53 expressed in the nuclear fraction of breast cancer cells revealed a wide spectrum of isoforms. p53 isoforms ΔNp53 (47 kDa) and Δ133p53β (35 kDa), known as dominant-negative repressors of p53 function, were detected as the most predominant variants in nuclei of invasive breast carcinoma cells. The isoforms expressed also varied between individual tumors, indicating potential roles of these p53 variants in human breast cancer.