Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Biljana Stangeland is active.

Publication


Featured researches published by Biljana Stangeland.


Plant Molecular Biology Reporter | 2002

An improved clearing method for GUS assay inArabidopsis endosperm and seeds

Biljana Stangeland; Zhian Salehian

Precise cellular localization of the GUS stain is notoriously difficult inArabidopsis seeds. Here we report an improved protocol for the clearing of seeds after GUS staining. Incubation in ethanol-acetic acid (EtAc) and Hoyer’s medium allows reliable cellular localization of the GUS, even in seeds from late developmental stages. This method also leads to the staining of nucleoli in the endosperm and embryo, facilitating nuclear counts in endosperm development.


Experimental Cell Research | 2013

Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome

Cecilie Sandberg; Gabriel Altschuler; Jieun Jeong; Kirsten Kierulf Strømme; Biljana Stangeland; Wayne Murrell; Unn Hilde Grasmo-Wendler; Ola Myklebost; Eirik Helseth; Einar Osland Vik-Mo; Winston Hide; Iver A. Langmoen

Glioblastoma is the most common brain tumor. Median survival in unselected patients is <10 months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplantation in mice, although the clinical relevance of these cells has not been well documented. We have performed the first genome-wide analysis that directly relates the gene expression profile of nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and cultivated populations of stem cells from the normal adult human brain. Although the two cell types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells of different origin may have common features. Genes upregulated in GSCs were also highly expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs.


Oncotarget | 2015

Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells

Biljana Stangeland; Awais A. Mughal; Zanina Grieg; Cecilie Sandberg; Mrinal Joel; Ståle Nygård; Torstein R. Meling; Wayne Murrell; Einar O. Vik Mo; Iver A. Langmoen

Ovarian cancer is associated with increased expression of the pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which induces tumor cell proliferation, angiogenesis, and metastasis. Even though bortezomib (BZ) has shown remarkable anti-tumor activity in hematological malignancies, it has been less effective in ovarian cancer; however, the mechanisms are not understood. We have recently shown that BZ unexpectedly induces the expression of IL-8 in ovarian cancer cells in vitro, by IκB kinase (IKK)-dependent mechanism. Here, we tested the hypothesis that IKK inhibition reduces the IL-8 production and increases BZ effectiveness in reducing ovarian tumor growth in vivo. Our results demonstrate that the combination of BZ and the IKK inhibitor Bay 117085 significantly reduces the growth of ovarian tumor xenografts in nude mice when compared to either drug alone. Mice treated with the BZ/Bay 117085 combination exhibit smallest tumors, and lowest levels of IL-8. Furthermore, the reduced tumor growth in the combination group is associated with decreased tumor levels of S536P-p65 NFκB and its decreased recruitment to IL-8 promoter in tumor tissues. These data provide the first in vivo evidence that combining BZ with IKK inhibitor is effective, and suggest that using IKK inhibitors may increase BZ effectiveness in ovarian cancer treatment.Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies. To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways. Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.


PLOS ONE | 2013

Expansion of multipotent stem cells from the adult human brain.

Wayne Murrell; Emily Palmero; John Bianco; Biljana Stangeland; Mrinal Joel; Linda Paulson; Bernd Thiede; Zanina Grieg; Ingunn Ramsnes; Håvard K. Skjellegrind; Ståle Nygård; Petter Brandal; Cecilie Sandberg; Einar Osland Vik-Mo; Sheryl Palmero; Iver A. Langmoen

The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells.


Scientific Reports | 2016

Ultrasonic Surgical Aspirate is a Reliable Source For Culturing Glioblastoma Stem Cells

Jinan Behnan; Biljana Stangeland; Tiziana Langella; Gaetano Finocchiaro; Wayne Murrell; Jan E. Brinchmann

Glioma stem cells (GSCs) are thought to be the source of tumor growth and therapy resistance. To understand the biology of GSCs, and target these tumors therapeutically, we need robust strategies for in vitro expansion of primary GSCs. To date, tumor core biopsies have been the main established source of GSCs. Since these samples are used for diagnostic purposes, the available tissue for cell culture and therapeutic targeting can be limited. In addition, a core biopsy is usually taken from one part of the tumor, thus would be unlikely to represent intra-tumor heterogeneity. To overcome these problems, tissue fragments from all over the tumor can be collected using an ultrasonic aspirator during surgery, thus assembling a “global tumor biopsy”. Usually, this ultrasonic aspirate (UA) sample is considered as biological waste after operations. Here, we show that UA samples offer a large and reliable source of live cells. Similar to core biopsies, UA samples enriched for GSCs that differentiated into neural lineages, showed inter-individual variation of GSC markers, and induced tumors. Molecular profiling showed that UA samples cover tumor heterogeneity better than core biopsies. These results suggest that UA samples can be used to establish large scale cultures for therapeutic applications.


Experimental Cell Research | 2011

A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies

Einar Osland Vik-Mo; Cecilie Sandberg; Mrinal Joel; Biljana Stangeland; Yasuhiro Watanabe; Alan Mackay-Sim; Morten C. Moe; Wayne Murrell; Iver A. Langmoen

Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.


Molecular Cancer | 2015

Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma- initiating cells

Awais A. Mughal; Zanina Grieg; Håvard K. Skjellegrind; Artem Fayzullin; Mustapha Lamkhannat; Mrinal Joel; M. Shakil Ahmed; Wayne Murrell; Einar Osland Vik-Mo; Iver A. Langmoen; Biljana Stangeland

BackgroundGlioblastoma (GBM) is the most common primary brain malignancy and confers a dismal prognosis. GBMs harbor glioblastoma-initiating cells (GICs) that drive tumorigenesis and contribute to therapeutic resistance and tumor recurrence. Consequently, there is a strong rationale to target this cell population in order to develop new molecular therapies against GBM. Accumulating evidence indicates that Nα-terminal acetyltransferases (NATs), that are dysregulated in numerous human cancers, can serve as therapeutic targets.MethodsMicroarrays were used to study the expression of several NATs including NAT12/NAA30 in clinical samples and stem cell cultures. The expression of NAT12/NAA30 was analyzed using qPCR, immunolabeling and western blot. We conducted shRNA-mediated knockdown of NAT12/NAA30 gene in GICs and studied the effects on cell viability, sphere-formation and hypoxia sensitivity. Intracranial transplantation to SCID mice enabled us to investigate the effects of NAT12/NAA30 depletion in vivo. Using microarrays we identified genes and biochemical pathways whose expression was altered upon NAT12/NAA30 down-regulation.ResultsWhile decreased expression of the distal 3’UTR of NAT12/NAA30 was generally observed in GICs and GBMs, this gene was strongly up-regulated at the protein level in GBM and GICs. The increased protein levels were not caused by increased levels of the steady state mRNA but rather by other mechanisms. Also, shorter 3’UTR of NAT12/NAA30 correlated with poor survival in glioma patients.As well, we observed previously not described nuclear localization of this typically cytoplasmic protein. When compared to non-silencing controls, cells featuring NAT12/NAA30 knockdown exhibited reduced cell viability, sphere-forming ability, and mitochondrial hypoxia tolerance. Intracranial transplantation showed that knockdown of NAT12/NAA30 resulted in prolonged animal survival.Microarray analysis of the knockdown cultures showed reduced levels of HIF1α and altered expression of several other genes involved in the hypoxia response. Furthermore, NAT12/NAA30 knockdown correlated with expressional dysregulation of genes involved in the p53 pathway, ribosomal assembly and cell proliferation. Western blot analysis revealed reduction of HIF1α, phospho-MTOR(Ser2448) and higher levels of p53 and GFAP in these cultures.ConclusionNAT12/NAA30 plays an important role in growth and survival of GICs possibly by regulating hypoxia response (HIF1α), levels of p-MTOR (Ser2448) and the p53 pathway.


Physiologia Plantarum | 2009

AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana

Biljana Stangeland; E. Maryann Rosenhave; Per Winge; Anita Berg; Silja S. Amundsen; Mirela Karabeg; Abul Mandal; Atle M. Bones; Paul E. Grini; Reidunn B. Aalen

The Arabidopsis thaliana accession C24 is a vernalization-responsive, moderately late flowering ecotype. We report that a mutation in AtMBD8, which encodes a protein with a putative Methyl-CpG-Binding Domain (MBD), in C24 background, results in a delay in flowering time during both long and short days. The atmbd8-1 mutant responded to vernalization as wild type (wt) plants. Consistent with a role in modulation of flowering time, an AtMBD8::GUS-reporter construct was expressed in the shoot meristem region and developing leaves. Full-genome transcriptional profiling revealed very few changes in gene expression between atmbd8-1 and wt plants. The expression level of FLC, the major repressor of transition to flowering, was unchanged in atmbd8-1, and in accordance with that, genes upstream of FLC were unaffected by the mutation. The expression level of CONSTANS, involved in photoperiodic control of flowering, was very similar in atmbd8-1 and wt plants. In contrast, the major promoters of flowering, FT and SOC1, were both downregulated. As FT is a regulator of SOC1, we conclude that AtMBD8 is a novel promoter of flowering that acts upstream of FT in the C24 accession. In contrast to atmbd8-1, the Colombia (Col) SALK T-DNA insertion line, atmbd8-2, did not display a delayed transition to flowering. Transcriptional profiling revealed that a substantial number of genes were differentially expressed between C24 and Col wt seedlings. Several of these genes are also differentially expressed in late flowering mutants. We suggest that these differences contribute to the contrasting effect of a mutation in AtMBD8 in the two ecotypes.


Oncogene | 2017

Differential propagation of stroma and cancer stem cells dictates tumorigenesis and multipotency

Jinan Behnan; Biljana Stangeland; S A M Hosainey; Mrinal Joel; T K Olsen; F Micci; Joel C. Glover; P Isakson; Jan E. Brinchmann

Glioblastoma Multiforme (GBM) is characterized by high cancer cell heterogeneity and the presence of a complex tumor microenvironment. Those factors are a key obstacle for the treatment of this tumor type. To model the disease in mice, the current strategy is to grow GBM cells in serum-free non-adherent condition, which maintains their tumor-initiating potential. However, the so-generated tumors are histologically different from the one of origin. In this work, we performed high-throughput marker expression analysis and investigated the tumorigenicity of GBM cells enriched under different culture conditions. We identified a marker panel that distinguished tumorigenic sphere cultures from non-tumorigenic serum cultures (high CD56, SOX2, SOX9, and low CD105, CD248, αSMA). Contrary to previous work, we found that ‘mixed cell cultures’ grown in serum conditions are tumorigenic and express cancer stem cell (CSC) markers. As well, 1% serum plus bFGF and TGF-α preserved the tumorigenicity of sphere cultures and induced epithelial-to-mesenchymal transition gene expression. Furthermore, we identified 12 genes that could replace the 840 genes of The Cancer Genome Atlas (TCGA) used for GBM-subtyping. Our data suggest that the tumorigenicity of GBM cultures depend on cell culture strategies that retain CSCs in culture rather than the presence of serum in the cell culture medium.


Neuroepigenetics | 2016

Gene knockdown of CENPA reduces sphere forming ability and stemness of glioblastoma initiating cells

Jinan Behnan; Zanina Grieg; Mrinal Joel; Ingunn Ramsness; Biljana Stangeland

Abstract CENPA is a centromere-associated variant of histone H3 implicated in numerous malignancies. However, the role of this protein in glioblastoma (GBM) has not been demonstrated. GBM is one of the most aggressive human cancers. GBM initiating cells (GICs), contained within these tumors are deemed to convey characteristics such as invasiveness and resistance to therapy. Therefore, there is a strong rationale for targeting these cells. We investigated the expression of CENPA and other centromeric proteins (CENPs) in GICs, GBM and variety of other cell types and tissues. Bioinformatics analysis identified the gene signature: high_CENP(AEFNM)/low_CENP(BCTQ) whose expression correlated with significantly worse GBM patient survival. Knockdown of CENPA reduced sphere forming ability, proliferation and cell viability of GICs. We also detected significant reduction in the expression of stemness marker SOX2 and the proliferation marker Ki67. These results indicate that CENPA might represent a promising therapeutic target for GBM treatment.

Collaboration


Dive into the Biljana Stangeland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zanina Grieg

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge