Bill C. Hawkins
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bill C. Hawkins.
Organic Letters | 2011
Stephen L. Birkett; Danny Ganame; Bill C. Hawkins; Sébastien Meiries; Tim Quach; Mark A. Rizzacasa
The total synthesis of a stereoisomer of 8-deshydroxyajudazol B (4), the putative biosynthetic intermediate of the ajudazols A (1) and B (2), is described. The key steps in the synthesis included an intramolecular Diels-Alder (IMDA) reaction to secure the isochromanone fragment, a novel selective acylation/O,N-shift to give a hydroxyamide which was cyclized to the oxazole and a high yielding Sonogashira coupling to form the C18-C19 bond. Partial alkyne reduction then afforded the target 4.
Journal of Organic Chemistry | 2013
Stephen L. Birkett; Danny Ganame; Bill C. Hawkins; Sébastien Meiries; Tim Quach; Mark A. Rizzacasa
The total synthesis of the proposed structure for the minor myxobacterial metabolite 8-deshydroxyajudazol A (3) is described. The isochromanone moiety present in the eastern fragment was constructed by an intramolecular-Diels-Alder (IMDA). Difficulties were encountered with the formation of the 2,4-disubstituted oxazole, so this was synthesized via a modified approach. This involved selective acylation of the diol 7 with acid 8, azide displacement of the secondary alcohol, and subsequent azide reduction in the presence of base which induced an O,N shift to give the hydroxyamide 23. Cyclodehydration then gave the desired oxazole 24 and deprotection followed by mesylation and elimination produced the C15 alkene 5. Sonogashira coupling with the eastern fragment vinyl iodide 6 and partial reduction yielded 8-deshydroxyajudazol A (3).
Biochemical Pharmacology | 2015
Jezrael L. Revalde; Yan Li; Bill C. Hawkins; Rhonda J. Rosengren; James W. Paxton
Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CURs unstable β-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a β-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR.
ChemMedChem | 2014
Bill C. Hawkins; Lisa Lindqvist; Duong Nhu; Phillip P Sharp; David Segal; Andrew Powell; Michael Campbell; Eileen Ryan; Jennifer M. Chambers; Jonathan M. White; Mark A. Rizzacasa; Guillaume Lessene; David C. S. Huang; Christopher J. Burns
The complex natural products silvestrol (1) and episilvestrol (2) are inhibitors of translation initiation through binding to the DEAD‐box helicase eukaryotic initiation factor 4A (eIF4A). Both compounds are potently cytotoxic to cancer cells in vitro, and 1 has demonstrated efficacy in vivo in several xenograft cancer models. Here we show that 2 has limited plasma membrane permeability and is metabolized in liver microsomes in a manner consistent with that reported for 1. In addition, we have prepared a series of analogues of these compounds where the complex pseudo‐sugar at C6 has been replaced with chemically simpler moieties to improve drug‐likeness. Selected compounds from this work possess excellent activity in biochemical and cellular translation assays with potent activity against leukemia cell lines.
Organic Letters | 2008
Rajeswari Thayumanavan; Bill C. Hawkins; Paul A. Keller; Stephen G. Pyne; Graham E. Ball
The reductive ring-opening of fullerenyldihydropyrrole yields ethyl N-benzhydryl fullerenyl[60]glycinate, which is deprotected to give ethyl fullerenylglycinate. The free amine is able to react with a variety of aldehydes and ketones in a Mannich-type process to produce 5-substituted and 5,5-disubstituted fulleroprolines and represents a versatile and general strategy to this class of compounds.
Journal of Organic Chemistry | 2017
Robert J. Smith; Duong Nhu; Mitchell R. Clark; Sinan Gai; Nigel T. Lucas; Bill C. Hawkins
A tandem deprotection-cyclization reaction of 1,1-diacylcyclopropanes is described which allows rapid access to structurally diverse 2,3-disubstituted chromones in good yields, and with straightforward purification. The utility of this reaction is showcased by the construction of the potent antibacterial marine natural product bromophycoic acid E scaffold.
Journal of Organic Chemistry | 2016
Robert J. Smith; Daniel A. Mills; Duong Nhu; Eng Wui Tan; Nigel T. Lucas; Bill C. Hawkins
A series of electronically diverse imines were found to readily react with various donor-acceptor cyclopropyl acid chlorides, with complete regioselectivity, to form 1,3-oxazin-4-ones in moderate yields (25-48% over two steps). Select oxazinones underwent a base induced rearrangement to afford the corresponding cycloheptene-fused oxazinones in good yields (up to 70%).
Planta Medica | 2015
Jeremy Lei; Elaine J. Burgess; Alistair T. B. Richardson; Bill C. Hawkins; Sarah K. Baird; Bruce M. Smallfield; John W. van Klink; Nigel B. Perry
Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells.
Organic Letters | 2015
Alexander J. Craig; Louise van der Salm; Lars Stevens-Cullinane; Nigel T. Lucas; Eng Wui Tan; Bill C. Hawkins
1,3-Oxazinen-4-ones are medicinally important scaffolds which have traditionally been accessed using a hetero-Diels-Alder approach or more recently using a cobalt-catalyzed three-component cycloaddition. Herein we report a novel strategy to access this scaffold which allows for the rapid and high yielding synthesis of 1,3-oxazinen-4-ones under ambient temperature and pressures with improved substrate scope.
Australian Journal of Chemistry | 2015
Duong Nhu; Bill C. Hawkins; Christopher J. Burns
The Algar–Flynn–Oyamada reaction is the classical method to synthesize 3-hydroxyflavones from chalcones. Despite its relative simplicity, the reaction has several drawbacks including variable and often low product yields. We have found that phase transfer catalysis improves the yields and expands the scope of the Algar–Flynn–Oyamada reaction of a series of 4-benzyloxy-2-hydroxy chalcones.