Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bill X. Wu is active.

Publication


Featured researches published by Bill X. Wu.


Neuromolecular Medicine | 2010

Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses.

Bill X. Wu; Christopher J. Clarke; Yusuf A. Hannun

Ceramide, a bioactive lipid, has been extensively studied and identified as an essential bioactive molecule in mediating cellular signaling pathways. Sphingomyelinase (SMase), (EC 3.1.4.12) catalyzes the cleavage of the phosphodiester bond in sphingomyelin (SM) to form ceramide and phosphocholine. In mammals, three Mg2+-dependent neutral SMases termed nSMase1, nSMase2 and nSMase3 have been identified. Among the three enzymes, nSMase2 is the most studied and has been implicated in multiple physiological responses including cell growth arrest, apoptosis, development and inflammation. In this review, we summarize recent findings for the cloned nSMases and discuss the insights for their roles in regulation ceramide metabolism and cellular signaling pathway.


Prostaglandins & Other Lipid Mediators | 2008

DUAL AND DISTINCT ROLES FOR SPHINGOSINE KINASE 1 AND SPHINGOSINE 1 PHOSPHATE IN THE RESPONSE TO INFLAMMATORY STIMULI IN RAW MACROPHAGES

Samar M. Hammad; Heather G. Crellin; Bill X. Wu; Jessica Melton; Viviana Anelli; Lina M. Obeid

Sphingosine kinase 1 (SK1) and its product sphingosine-1-phosphate (S1P) have been implicated in the regulation of many cellular processes including growth regulation, protection from apoptosis, stimulation of angiogenesis, and most recently as mediators of the TNF-alpha inflammatory response. In this study we set out to examine the role of SK1/S1P in the RAW macrophage response to the potent inflammatory stimulus lipopolysaccharide (LPS). We show that LPS increases cellular levels of SK1 message and protein. This increase is at the transcriptional level and is accompanied by increased SK activity and generation of S1P. S1P is able to cause increases in COX-2 and PGE2 levels in RAW cells. Knockdown of SK1 using siRNA is able to inhibit the TNF but not the LPS inflammatory response. Moreover, knockdown of SK1 enhances both TNF- and LPS-induced apoptosis. These data indicate that there is a dual and distinct role for SK1 and S1P in the TNF and the LPS inflammatory pathways.


The FASEB Journal | 2008

A novel role for protein kinase Cδ-mediated phosphorylation of acid sphingomyelinase in UV light-induced mitochondrial injury

Youssef H. Zeidan; Bill X. Wu; Russell W. Jenkins; Lina M. Obeid; Yusuf A. Hannun

Multiple studies have addressed the mechanisms by which ultraviolet (UV) light induces cell death, and a few have focused on stress mediators such as acid sphingomyelinase (ASMase) or protein kinase Cδ (PKCδ). Based on a recent study that identified a novel mechanism of activation of ASMase through phosphorylation (1), the current study was undertaken to determine the upstream mechanisms regulating ASMase in response to UV and to investigate the role of ASMase and its phosphorylation at S508 as an integral event during UV light‐induced cell death. Exposure of MCF‐7 breast cancer cells to UV light type C (UVC) transiently activated ASMase with maximal activity detected at 10 min postirradiation. A significant increase in C16‐ceramide was detected concomitant with a decrease in C16‐sphingomyelin. In marked contrast, cells overexpressing the ASMaseS508A mutant, which could not be phosphorylated, had no change in either ASMase activity or ceramide levels post‐UV radiation. Loss of PKCδ by RNA interference or its inhibition by rottlerin blocked ASMase phosphorylation and membrane targeting, thus implicating PKCδ upstream of ASMase activation by UV light. Further investigations revealed that UV radiation altered mitochondrial morphology from elongated tubules to fragmented perinuclear organelles, consistent with the onset of the apoptotic cascade. Importantly, cells overexpressing ASMaseS508A were protected (>50%) from UV light‐induced mito‐chondrial fragmentation. Mechanistically, the results showed that ASMaseS508A cells had 50% less active Bax than ASMaseWT cells. These molecular differences culminated in resistance of ASMaseS508 cells to UVC‐induced cell death (25%) as compared to ASMaseWT cells (46%). Taken together, this study provides key molecular insights into activation of ASMase in response to UV light, the role of PKCδ in this activation, and the role of ASMase in mediating apoptotic re‐sponses.— Zeidan, Y. H., Wu, B. X., Jenkins, R. W., Obeid, L. M., Hannun, Y. A. A novel role for protein kinase cδ‐mediated phosphorylation of acid sphingo‐myelinase in UV light‐induced mitochondrial injury. FASEB J. 22, 183–193 (2008)


Journal of Biological Chemistry | 2010

Identification and Characterization of Murine Mitochondria-associated Neutral Sphingomyelinase (MA-nSMase), the Mammalian Sphingomyelin Phosphodiesterase 5

Bill X. Wu; Vinodh Rajagopalan; Patrick Roddy; Christopher J. Clarke; Yusuf A. Hannun

Sphingolipids play important roles in regulating cellular responses. Although mitochondria contain sphingolipids, direct regulation of their levels in mitochondria or mitochondria-associated membranes is mostly unclear. Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sphingomyelin (SM) to ceramide and phosphocholine, have been found in the mitochondria of yeast and zebrafish, yet their existence in mammalian mitochondria remains unknown. Here, we have identified and cloned a cDNA based on nSMase homologous sequences. This cDNA encodes a novel protein of 483 amino acids that displays significant homology to nSMase2 and possesses the same catalytic core residues as members of the extended N-SMase family. A transiently expressed V5-tagged protein co-localized with both mitochondria and endoplasmic reticulum markers in MCF-7 and HEK293 cells; accordingly, the enzyme is referred to as mitochondria-associated nSMase (MA-nSMase). MA-nSMase was highly expressed in testis, pancreas, epididymis, and brain. MA-nSMase had an absolute requirement for cations such as Mg2+ and Mn2+ and activation by the anionic phospholipids, especially phosphatidylserine and the mitochondrial cardiolipin. Importantly, overexpression of MA-nSMase in HEK293 cells significantly increased in vitro N-SMase activity and also modulated the levels of SM and ceramide, indicating that the identified cDNA encodes a functional SMase. Thus, these studies identify and characterize, for the first time, a mammalian MA-nSMase. The characterization of MA-nSMase described here will contribute to our understanding of pathways regulated by sphingolipid metabolites, particularly with reference to the mitochondria and associated organelles.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway

Bei Liu; Matthew Staron; Feng Hong; Bill X. Wu; Shaoli Sun; Crystal Morales; Craig E. Crosson; Stephen Tomlinson; Ingyu Kim; Dianqing Wu; Zihai Li

Increasing evidence points to a role for the protein quality control in the endoplasmic reticulum (ER) in maintaining intestinal homeostasis. However, the specific role for general ER chaperones in this process remains unknown. Herein, we report that a major ER heat shock protein grp94 interacts with MesD, a critical chaperone for the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6). Without grp94, LRP6 fails to export from the ER to the cell surface, resulting in a profound loss of canonical Wnt signaling. The significance of this finding is demonstrated in vivo in that grp94 loss causes a rapid and profound compromise in intestinal homeostasis with gut-intrinsic defect in the proliferation of intestinal crypts, compromise of nuclear β-catenin translocation, loss of crypt-villus structure, and impaired barrier function. Taken together, our work has uncovered the role of grp94 in chaperoning LRP6-MesD in coordinating intestinal homeostasis, placing canonical Wnt-signaling pathway under the direct regulation of the general protein quality control machinery in the ER.


Journal of Biological Chemistry | 2011

Novel Pathway of Ceramide Production in Mitochondria THIOESTERASE AND NEUTRAL CERAMIDASE PRODUCE CERAMIDE FROM SPHINGOSINE AND ACYL-CoA

Sergei A. Novgorodov; Bill X. Wu; Tatyana I. Gudz; Jacek Bielawski; Tatiana V. Ovchinnikova; Yusuf A. Hannun; Lina M. Obeid

Reports suggest that excessive ceramide accumulation in mitochondria is required to initiate the intrinsic apoptotic pathway and subsequent cell death, but how ceramide accumulates is unclear. Here we report that liver mitochondria exhibit ceramide formation from sphingosine and palmitoyl-CoA and from sphingosine and palmitate. Importantly, this activity was markedly decreased in liver from neutral ceramidase (NCDase)-deficient mice. Moreover, the levels of ceramide were dissimilar in liver mitochondria of WT and NCDase KO mice. These results suggest that NCDase is a key participant of ceramide formation in liver mitochondria. We also report that highly purified liver mitochondria have ceramidase, reverse ceramidase, and thioesterase activities. Increased accessibility of palmitoyl-CoA to the mitochondrial matrix with the pore-forming peptide zervamicin IIB resulted in 2-fold increases in palmitoyl-CoA hydrolysis by thioesterase. This increased hydrolysis was accompanied by an increase in ceramide formation, demonstrating that both outer membrane and matrix localized thioesterases can regulate ceramide formation. Also, ceramide formation might occur both in the outer mitochondrial membrane and in the mitochondrial matrix, suggesting the existence of distinct ceramide pools. Taken together, these results suggest that the reverse activity of NCDase contributes to sphingolipid homeostasis in this organelle in vivo.


Journal of Clinical Investigation | 2013

Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse

Joseph C. Cheng; Aiping Bai; Thomas H. Beckham; S. Tucker Marrison; Caroline L. Yount; Katherine Young; Ping Lu; Anne M. Bartlett; Bill X. Wu; Barry Keane; Kent Armeson; David T. Marshall; Thomas E. Keane; Michael T. Smith; E. Ellen Jones; Richard R. Drake; Alicja Bielawska; James S. Norris; Xiang Liu

Escape of prostate cancer (PCa) cells from ionizing radiation-induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy.


American Journal of Respiratory Cell and Molecular Biology | 2009

Defective Acid Sphingomyelinase Pathway with Pseudomonas aeruginosa Infection in Cystic Fibrosis

Hong Yu; Youssef H. Zeidan; Bill X. Wu; Russell W. Jenkins; Terence R. Flotte; Yusuf A. Hannun; Isabel Virella-Lowell

Acid sphingomyelinase (ASMase) is a key enzyme in sphingolipid metabolism, which can be activated by various cellular stress mechanisms including bacterial pathogens. Activation of ASMase generates ceramide, which is important for innate immune response to eliminate infected pathogens. The current study reveals a defective ASMase pathway after Pseudomonas aeruginosa infection in both a cystic fibrosis (CF) bronchial epithelial cell line (IB3-1 cell) and in the lungs of CF transmembrane conductance regulator (CFTR) knockout (KO) mice as compared with S9 cells and wild-type C57BL/6 mice. ASMase activity and total ceramide levels significantly increased in S9 cells and C57BL/6 mice with P. aeruginosa infection, but not in IB3-1 cells and CFTR KO mice. The silencing of CFTR by CFTR RNAi in S9 cells significantly decreased ASMase activity after bacterial infection as compared with controls. This study also demonstrates that induction of ASMase is responsible for modulating the immune response to bacterial infection. Blocking ASMase activity with specific ASMase RNAi, an ASMase inhibitor, or an ASMase antibody in S9 cells significantly increased IL-8 levels with P. aeruginosa infection compared with controls. Reciprocally, adding exogenous bacterial sphingomyelinase to IB3-1 cells significantly decreased IL-8 levels compared with untreated cells. In addition, silencing of ASMase in S9 cells also significantly decreased bacterial internalization. Adding exogenous bacterial sphingomyelinase to IB3-1 cells reconstituted the cell death response to P. aeruginosa infection. This study demonstrates that the defective ASMase pathway in CF is a key contributor to the unabated IL-8 response with P. aeruginosa infection and to the compromised host response failing to eradicate bacteria.


Biochemistry | 2008

Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis.

L.-Ruth Montes; David J. López; Jesús Sot; Luis A. Bagatolli; Martin Stonehouse; Michael L. Vasil; Bill X. Wu; Yusuf A. Hannun; Félix M. Goñi; Alicia Alonso

Hot-cold hemolysis is the phenomenon whereby red blood cells, preincubated at 37 degrees C in the presence of certain agents, undergo rapid hemolysis when transferred to 4 degrees C. The mechanism of this phenomenon is not understood. PlcHR 2, a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, that is the prototype of a new phosphatase superfamily, induces hot-cold hemolysis. We found that the sphingomyelinase, but not the phospholipase C activity, is essential for hot-cold hemolysis because the phenomenon occurs not only in human erythrocytes that contain both phosphatidylcholine (PC) and sphingomyelin (SM) but also in goat erythrocytes, which lack PC. However, in horse erythrocytes, with a large proportion of PC and almost no SM, hot-cold hemolysis induced by PlcHR 2 is not observed. Fluorescence microscopy observations confirm the formation of ceramide-enriched domains as a result of PlcHR 2 activity. After cooling down to 4 degrees C, the erythrocyte ghost membranes arising from hemolysis contain large, ceramide-rich domains. We suggest that formation of these rigid domains in the originally flexible cell makes it fragile, thus highly susceptible to hemolysis. We also interpret the slow hemolysis observed at 37 degrees C as a phenomenon of gradual release of aqueous contents, induced by the sphingomyelinase activity, as described by Ruiz-Arguello et al. [(1996) J. Biol. Chem. 271, 26616]. These hypotheses are supported by the fact that ceramidase, which is known to facilitate slow hemolysis at 37 degrees C, actually hinders hot-cold hemolysis. Differential scanning calorimetry of erytrocyte membranes treated with PlcHR 2 demonstrates the presence of ceramide-rich domains that are rigid at 4 degrees C but fluid at 37 degrees C. Ceramidase treatment causes the disapperance of the calorimetric signal assigned to ceramide-rich domains. Finally, in liposomes composed of SM, PC, and cholesterol, which exhibit slow release of aqueous contents at 37 degrees C, addition of 10 mol % ceramide and transfer to 4 degrees C cause a large increase in the rate of solute efflux.


Advances in Enzyme Regulation | 2011

The neutral sphingomyelinase family: Identifying biochemical connections

Christopher J. Clarke; Bill X. Wu; Yusuf A. Hannun

Neutral sphingomyelinases (N-SMases) are considered to be key mediators of stress-induced ceramide production. The extended family of N-SMases is a subset of the DNaseI superfamily and comprises members from bacteria, yeast and mammals. In recent years, the identification and cloning of mammalian N-SMase family members has led to significant advances in understanding their physiological roles and regulation. However, there is still limited information on their regulation at the biochemical and molecular level. In this review, we summarize current knowledge about the biochemical regulation of the eukaryotic N-SMases and identify the major areas where knowledge is lacking. In recent years, research into the roles and regulation of N-SMases has moved in great strides with the cloning and characterization of multiple N-SMase isoforms and the development of knockout mice. However, as researchers continue to move forward in understanding the physiological functions of these various N-SMase isoforms, it has become exceedingly important to define howthese isoforms are regulated at the biochemical and molecular level. This is crucial for the development of future tools to study N-SMase signaling such as, for example, phospho-specific antibodies designating activation states. This is also an important part of identifying novel roles of N-SMases in physiological and pathological states. Finally, only by obtaining a more complete understanding of the workings of these enzymes at the molecular level, will investigators be able to design appropriate compounds that can target and inhibit their activity both efficiently and specifically. Certainly, the last of these is crucial when considering the potential of N-SMases as therapeutic targets. With this in mind, we sincerely hope that the next decade of research will even surpass the last ten years in advancing our understanding of the eukaryotic N-SMase family.

Collaboration


Dive into the Bill X. Wu's collaboration.

Top Co-Authors

Avatar

Yusuf A. Hannun

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Rosalie K. Crouch

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Zihai Li

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Fan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bei Liu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Feng Hong

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Alessandra Metelli

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Baerbel Rohrer

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge