Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Billi Randall is active.

Publication


Featured researches published by Billi Randall.


Cerebral Cortex | 2010

Preserving Syntactic Processing across the Adult Life Span: The Modulation of the Frontotemporal Language System in the Context of Age-Related Atrophy

Lorraine K. Tyler; Meredith A. Shafto; Billi Randall; Paul Wright; William D. Marslen-Wilson; Emmanuel A. Stamatakis

Although widespread neural atrophy is an inevitable consequence of normal aging, not all cognitive abilities decline as we age. For example, spoken language comprehension tends to be preserved, despite atrophy in neural regions involved in language function. Here, we combined measures of behavior, functional activation, and gray matter (GM) change in a younger (19–34 years) and older group (49–86 years) of participants to identify the mechanisms leading to preserved language comprehension across the adult life span. We focussed primarily on syntactic functions because these are strongly left lateralized, providing the potential for contralateral recruitment. In an functional magnetic resonance imaging study, we used a word-monitoring task to minimize working memory demands, manipulating the availability of semantics and syntax to ask whether syntax is preserved in aging because of the functional recruitment of other brain regions, which successfully compensate for neural atrophy. Performance in the older group was preserved despite GM loss. This preservation was related to increased activity in right hemisphere frontotemporal regions, which was associated with age-related atrophy in the left hemisphere frontotemporal network activated in the young. We argue that preserved syntactic processing across the life span is due to the shift from a primarily left hemisphere frontotemporal system to a bilateral functional language network.


Brain | 2011

Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage

Lorraine K. Tyler; William D. Marslen-Wilson; Billi Randall; Paul Wright; Barry Devereux; Jie Zhuang; Marina Papoutsi; Emmanuel A. Stamatakis

For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left hemisphere damage and healthy participants to ask whether the left inferior frontal gyrus is essential for syntactic processing. In a functional neuroimaging study, participants listened to spoken sentences that either contained a syntactically ambiguous or matched unambiguous phrase. Behavioural data on three tests of syntactic processing were subsequently collected. In controls, syntactic processing co-activated left hemisphere Brodmann areas 45/47 and posterior middle temporal gyrus. Activity in a left parietal cluster was sensitive to working memory demands in both patients and controls. Exploiting the variability in lesion location and performance in the patients, voxel-based correlational analyses showed that tissue integrity and neural activity—primarily in left Brodmann area 45 and posterior middle temporal gyrus—were correlated with preserved syntactic performance, but unlike the controls, patients were insensitive to syntactic preferences, reflecting their syntactic deficit. These results argue for the essential contribution of the left inferior frontal gyrus in syntactic analysis and highlight the functional relationship between left Brodmann area 45 and the left posterior middle temporal gyrus, suggesting that when this relationship breaks down, through damage to either region or to the connections between them, syntactic processing is impaired. On this view, the left inferior frontal gyrus may not itself be specialized for syntactic processing, but plays an essential role in the neural network that carries out syntactic computations.


Language and Cognitive Processes | 2008

Early decomposition in visual word recognition: Dissociating morphology, form, and meaning

William D. Marslen-Wilson; Mirjana Bozic; Billi Randall

The role of morphological, semantic, and form-based factors in the early stages of visual word recognition was investigated across different SOAs in a masked priming paradigm, focusing on English derivational morphology. In a first set of experiments, stimulus pairs co-varying in morphological decomposability and in semantic and orthographic relatedness were presented at three SOAs (36, 48, and 72 ms). No effects of orthographic relatedness were found at any SOA. Semantic relatedness did not interact with effects of morphological decomposability, which came through strongly at all SOAs, even for pseudo-suffixed pairs such as archer-arch. Derivational morphological effects in masked priming seem to be primarily driven by morphological decomposability at an early stage of visual word recognition, and are independent of semantic factors. A second experiment reversed the order of prime and target (stem-derived rather than derived-stem), and again found that morphological priming did not interact with semantic relatedness. This points to an early segmentation process that is driven by morphological decomposability and not by the structure or content of central lexical representations.


Journal of Cognitive Neuroscience | 2002

Dissociations in Processing Past Tense Morphology: Neuropathology and Behavioral Studies

Lorraine K. Tyler; Paul deMornay-Davies; Rebekah Anokhina; Catherine E. Longworth; Billi Randall; William D. Marslen-Wilson

Neuropsychological research showing that the regular (jumpjumped) and irregular (drive/drove) past tense inflectional morphology can dissociate following brain damage has been important in testing claims about the cognitive and neural status of linguistic rules. These dissociations have been interpreted as evidence for two different computational systemsa rule-based system underlying the processing of regulars and the irregulars being individually listed in the mental lexicon. In contrast, connectionist accounts claim that these dissociations can be modeled within a single system. Combining behavioral data from patients with detailed information about their neuropathology can, in principle, provide strong constraints on accounts of the past tense. In this study, we tested five nonfluent aphasic patients, all of whom had extensive left hemisphere (LH) damage involving the left inferior frontal gyrus and underlying structures, and four patients with semantic deficits following herpes simplex encephalitis (HSE) who had extensive damage to the inferior temporal cortex. These patients were tested in experiments probing past tense processing. In a large priming study, the nonfluent patients showed no priming for the regular past tense but significant priming for the irregulars (whereas controls show priming for both). In contrast, the HSE patients showed significantly impaired performance for the irregulars in an elicitation task. These patterns of behavioral data and neuropathology suggest that two separable but interdependent systems underlie processing of the regular and irregular past tense.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Bihemispheric foundations for human speech comprehension

Mirjana Bozic; Lorraine K. Tyler; David T. Ives; Billi Randall; William D. Marslen-Wilson

Emerging evidence from neuroimaging and neuropsychology suggests that human speech comprehension engages two types of neurocognitive processes: a distributed bilateral system underpinning general perceptual and cognitive processing, viewed as neurobiologically primary, and a more specialized left hemisphere system supporting key grammatical language functions, likely to be specific to humans. To test these hypotheses directly we covaried increases in the nonlinguistic complexity of spoken words [presence or absence of an embedded stem, e.g., claim (clay)] with variations in their linguistic complexity (presence of inflectional affixes, e.g., play+ed). Nonlinguistic complexity, generated by the on-line competition between the full word and its onset-embedded stem, was found to activate both right and left fronto-temporal brain regions, including bilateral BA45 and -47. Linguistic complexity activated left-lateralized inferior frontal areas only, primarily in BA45. This contrast reflects a differentiation between the functional roles of a bilateral system, which supports the basic mapping from sound to lexical meaning, and a language-specific left-lateralized system that supports core decompositional and combinatorial processes invoked by linguistically complex inputs. These differences can be related to the neurobiological foundations of human language and underline the importance of bihemispheric systems in supporting the dynamic processing and interpretation of spoken inputs.


Journal of Experimental Psychology: Learning, Memory and Cognition | 2004

Distinctiveness and correlation in conceptual structure: behavioral and computational studies.

Billi Randall; Helen E. Moss; Jennifer M. Rodd; Mike Greer; Lorraine K. Tyler

Patients with category-specific deficits have motivated a range of hypotheses about the structure of the conceptual system. One class of models claims that apparent category dissociations emerge from the internal structure of concepts rather than fractionation of the system into separate substores. This account claims that distinctive properties of concepts in the living domain are vulnerable because of their weak correlation with other features. Given the assumption that mutual activation among correlated properties produces faster activation in the normal system, the authors predicted a disadvantage for the distinctive features of living things for unimpaired adults. Results of a speeded feature verification study supported this prediction, as did a computational simulation in which networks mapped from orthography to semantics.


Neuropsychologia | 2010

The Functional Organisation of the Fronto-Temporal Language System: Evidence from Syntactic and Semantic Ambiguity.

Jennifer M. Rodd; Olivia Longe; Billi Randall; Lorraine K. Tyler

Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities as well as carefully matched low-ambiguity sentences. Results showed ambiguity-related responses in the posterior left inferior frontal gyrus (pLIFG) and posterior left middle temporal regions. The pLIFG activations were present for both syntactic and semantic ambiguities suggesting that this region is not specialised for processing either semantic or syntactic information, but instead performs cognitive operations that are required to resolve different types of ambiguity irrespective of their linguistic nature, for example by selecting between possible interpretations or reinterpreting misparsed sentences. Syntactic ambiguities also produced activation in the posterior middle temporal gyrus. These data confirm the functional relationship between these two brain regions and their importance in constructing grammatical representations of spoken language.


Journal of Cognitive Neuroscience | 2013

Objects and categories: Feature statistics and object processing in the ventral stream

Lorraine K. Tyler; Shannon Chiu; Jie Zhuang; Billi Randall; Barry Devereux; Paul Wright; Alex Clarke; Kirsten I. Taylor

Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the anteromedial temporal lobe (aMTL). The neurobiological principles of the conceptual analysis of objects remain more controversial. Much research has focused on two neural regions—the fusiform gyrus and aMTL, both of which show semantic category differences, but of different types. fMRI studies show category differentiation in the fusiform gyrus, based on clusters of semantically similar objects, whereas category-specific deficits, specifically for living things, are associated with damage to the aMTL. These category-specific deficits for living things have been attributed to problems in differentiating between highly similar objects, a process that involves the PRC. To determine whether the PRC and the fusiform gyri contribute to different aspects of an objects meaning, with differentiation between confusable objects in the PRC and categorization based on object similarity in the fusiform, we carried out an fMRI study of object processing based on a feature-based model that characterizes the degree of semantic similarity and difference between objects and object categories. Participants saw 388 objects for which feature statistic information was available and named the objects at the basic level while undergoing fMRI scanning. After controlling for the effects of visual information, we found that feature statistics that capture similarity between objects formed category clusters in fusiform gyri, such that objects with many shared features (typical of living things) were associated with activity in the lateral fusiform gyri whereas objects with fewer shared features (typical of nonliving things) were associated with activity in the medial fusiform gyri. Significantly, a feature statistic reflecting differentiation between highly similar objects, enabling object-specific representations, was associated with bilateral PRC activity. These results confirm that the statistical characteristics of conceptual object features are coded in the ventral stream, supporting a conceptual feature-based hierarchy, and integrating disparate findings of category responses in fusiform gyri and category deficits in aMTL into a unifying neurocognitive framework.


Cerebral Cortex | 2013

From Perception to Conception: How Meaningful Objects Are Processed over Time

Alex Clarke; Kirsten I. Taylor; Barry Devereux; Billi Randall; Lorraine K. Tyler

To recognize visual objects, our sensory perceptions are transformed through dynamic neural interactions into meaningful representations of the world but exactly how visual inputs invoke object meaning remains unclear. To address this issue, we apply a regression approach to magnetoencephalography data, modeling perceptual and conceptual variables. Key conceptual measures were derived from semantic feature-based models claiming shared features (e.g., has eyes) provide broad category information, while distinctive features (e.g., has a hump) are additionally required for more specific object identification. Our results show initial perceptual effects in visual cortex that are rapidly followed by semantic feature effects throughout ventral temporal cortex within the first 120 ms. Moreover, these early semantic effects reflect shared semantic feature information supporting coarse category-type distinctions. Post-200 ms, we observed the effects along the extent of ventral temporal cortex for both shared and distinctive features, which together allow for conceptual differentiation and object identification. By relating spatiotemporal neural activity to statistical feature-based measures of semantic knowledge, we demonstrate that qualitatively different kinds of perceptual and semantic information are extracted from visual objects over time, with rapid activation of shared object features followed by concomitant activation of distinctive features that together enable meaningful visual object recognition.


Journal of Cognitive Neuroscience | 2008

Cortical Differentiation for Nouns and Verbs Depends on Grammatical Markers

Lorraine K. Tyler; Billi Randall; Emmanuel A. Stamatakis

Here we address the contentious issue of how nouns and verbs are represented in the brain. The co-occurrence of noun and verb deficits with damage to different neural regions has led to the view that they are differentially represented in the brain. Recent neuroimaging evidence and inconsistent lesionbehavior associations challenge this view. We have suggested that nouns and verbs are not differentially represented in the brain, but that different patterns of neural activity are triggered by the different linguistic functions carried by nouns and verbs. We test these claims in a functional magnetic resonance imaging study using homophoneswords which function grammatically as nouns or verbs but have the same form and meaningensuring that any neural differences reflect differences in grammatical function. Words were presented as single stems and in phrases in which each homophone was preceded by an article to create a noun phrase (NP) or a pronoun to create a verb phrase (VP), thus establishing the words functional linguistic role. Activity for single-word homophones was not modulated by their frequency of usage as a noun or verb. In contrast, homophones marked as verbs by appearing in VPs elicited greater activity in the left posterior middle temporal gyrus (LpMTG) compared to homophones marked as nouns by occurring in NPs. Neuropsychological patients with grammatical deficits had lesions which overlapped with the greater LpMTG activity found for VPs. These results suggest that nouns and verbs do not invariably activate different neural regions; rather, differential cortical activity depends on the extent to which their different grammatical functions are engaged.

Collaboration


Dive into the Billi Randall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Wright

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Clarke

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Jie Zhuang

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge