Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Billy Sperlich is active.

Publication


Featured researches published by Billy Sperlich.


Journal of Sports Sciences | 2010

Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes

Billy Sperlich; Matthias Haegele; Silvia Achtzehn; John Linville; Hans-Christer Holmberg; Joachim Mester

Abstract Three textiles with increasing compressive surface were compared with non-compressive conventional clothing on physiological and perceptual variables during sub-maximal and maximal running. Fifteen well-trained endurance athletes (mean ± s: age 27.1 ± 4.8 years, [Vdot]O2max 63.7 ± 4.9 ml · min−1 · kg−1) performed four sub-maximal (∼70%[Vdot]O2max) and maximal tests with and without different compression stockings, tights, and whole-body compression suits. Arterial lactate concentration, oxygen saturation and partial pressure, pH, oxygen uptake, and ratings of muscle soreness were recorded before, during, and after all tests. In addition, we assessed time to exhaustion. Sub-maximal (P = 0.22) and maximal oxygen uptake (P = 0.26), arterial lactate concentration (P = 0.16; 0.20), pH (P = 0.23; 0.46), oxygen saturation (P = 0.13; 0.26), and oxygen partial pressure (P = 0.09; 0.20) did not differ between the types of clothing (effect sizes = 0.00–0.45). Ratings of perceived exertion (P = 0.10; 0.15), muscle soreness (P = 0.09; 0.10) and time to exhaustion (P = 0.16) were also unaffected by the different clothing (effect sizes = 0.28–0.85). This was the first study to evaluate the effect on endurance performance of different types of compression clothing with increasing amounts of compressive surface. Overall, there were no performance benefits when using the compression garments.


Frontiers in Physiology | 2014

Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training

Thomas Stöggl; Billy Sperlich

Endurance athletes integrate four conditioning concepts in their training programs: high-volume training (HVT), “threshold-training” (THR), high-intensity interval training (HIIT) and a combination of these aforementioned concepts known as polarized training (POL). The purpose of this study was to explore which of these four training concepts provides the greatest response on key components of endurance performance in well-trained endurance athletes. Methods: Forty eight runners, cyclists, triathletes, and cross-country skiers (peak oxygen uptake: (VO2peak): 62.6 ± 7.1 mL·min−1·kg−1) were randomly assigned to one of four groups performing over 9 weeks. An incremental test, work economy and a VO2peak tests were performed. Training intensity was heart rate controlled. Results: POL demonstrated the greatest increase in VO2peak (+6.8 ml·min·kg−1 or 11.7%, P < 0.001), time to exhaustion during the ramp protocol (+17.4%, P < 0.001) and peak velocity/power (+5.1%, P < 0.01). Velocity/power at 4 mmol·L−1 increased after POL (+8.1%, P < 0.01) and HIIT (+5.6%, P < 0.05). No differences in pre- to post-changes of work economy were found between the groups. Body mass was reduced by 3.7% (P < 0.001) following HIIT, with no changes in the other groups. With the exception of slight improvements in work economy in THR, both HVT and THR had no further effects on measured variables of endurance performance (P > 0.05). Conclusion: POL resulted in the greatest improvements in most key variables of endurance performance in well-trained endurance athletes. THR or HVT did not lead to further improvements in performance related variables.


PLOS ONE | 2013

Squeezing the Muscle: Compression Clothing and Muscle Metabolism during Recovery from High Intensity Exercise

Billy Sperlich; Dennis-Peter Born; Kimmo Kaskinoro; Kari K. Kalliokoski; Marko Laaksonen

The purpose of this experiment was to investigate skeletal muscle blood flow and glucose uptake in m. biceps (BF) and m. quadriceps femoris (QF) 1) during recovery from high intensity cycle exercise, and 2) while wearing a compression short applying ∼37 mmHg to the thigh muscles. Blood flow and glucose uptake were measured in the compressed and non-compressed leg of 6 healthy men by using positron emission tomography. At baseline blood flow in QF (P = 0.79) and BF (P = 0.90) did not differ between the compressed and the non-compressed leg. During recovery muscle blood flow was higher compared to baseline in both compressed (P<0.01) and non-compressed QF (P<0.001) but not in compressed (P = 0.41) and non-compressed BF (P = 0.05; effect size = 2.74). During recovery blood flow was lower in compressed QF (P<0.01) but not in BF (P = 0.26) compared to the non-compressed muscles. During baseline and recovery no differences in blood flow were detected between the superficial and deep parts of QF in both, compressed (baseline P = 0.79; recovery P = 0.68) and non-compressed leg (baseline P = 0.64; recovery P = 0.06). During recovery glucose uptake was higher in QF compared to BF in both conditions (P<0.01) with no difference between the compressed and non-compressed thigh. Glucose uptake was higher in the deep compared to the superficial parts of QF (compression leg P = 0.02). These results demonstrate that wearing compression shorts with ∼37 mmHg of external pressure reduces blood flow both in the deep and superficial regions of muscle tissue during recovery from high intensity exercise but does not affect glucose uptake in BF and QF.


Neuroscience Letters | 2011

Lactate infusion at rest increases BDNF blood concentration in humans

Thorsten Schiffer; Stefanie Schulte; Billy Sperlich; Silvia Achtzehn; Hannes Fricke; Heiko K. Strüder

Studies in humans use blood lactate to determine the degree of the exercise intensity, suggesting that exercise with elevated blood lactate concentrations results in increased BDNF plasma concentrations. However, it is not clear if lactate per se or rather other mechanisms are responsible for changes in blood BDNF concentrations. The lactate clamp method at rest is an appropriate method to examine physiological responses of lactate on the human organism without the effects of exercise. Eight male sport students placed in a sitting position received intravenous infusions with a 4 molar sodium-lactate solution in an incremental design starting with an infusion rate of 0.01ml/kgBW/min for the first three minutes, which was increased every three minutes by 0.01ml/kgBW/min up to 0.08ml/kg/min in the 24th minute. All together each subject received 4.2mmol of infusion. Venous blood samples were taken before and immediately after the infusion as well as in the 24th and the 60th min after the infusion period and analysed for BDNF. Blood gases and capillary blood lactate (La) were analysed before the test, every three minutes directly before increasing the infusion rate, at the end of the infusion and in the post infusions period until the 12th min and after 24 and 60min. BDNF and La increased significantly after the infusion and reached baseline values at the end of the experiment (p<0.05, p<0.01, respectively). pH and hydrogen ions increased from the beginning until the end of the infusion period (p<0.01). This data suggest that blood lactate is involved in the regulation of BDNF blood concentrations.


Frontiers in Physiology | 2016

Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies

Peter Düking; Andreas Hotho; Hans-Christer Holmberg; Franz Konstantin Fuss; Billy Sperlich

Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athletes training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health.


Medicine and Science in Sports and Exercise | 2015

Repeated Double-Poling Sprint Training in Hypoxia by Competitive Cross-country Skiers

Raphael Faiss; Sarah J. Willis; Dennis-Peter Born; Billy Sperlich; Jean-Marc Vesin; Hans-Christer Holmberg; Grégoire P. Millet

PURPOSE Repeated-sprint training in hypoxia (RSH) was recently shown to improve repeated-sprint ability (RSA) in cycling. This phenomenon is likely to reflect fiber type-dependent, compensatory vasodilation, and therefore, our hypothesis was that RSH is even more beneficial for activities involving upper body muscles, such as double poling during cross-country skiing. METHODS In a double-blinded fashion, 17 competitive cross-country skiers performed six sessions of repeated sprints (each consisting of four sets of five 10-s sprints, with 20-s intervals of recovery) either in normoxia (RSN, 300 m; FiO2, 20.9%; n = 8) or normobaric hypoxia (RSH, 3000 m; FiO2, 13.8 %; n = 9). Before (pre) and after (post) training, performance was evaluated with an RSA test (10-s all-out sprints-20-s recovery, until peak power output declined by 30%) and a simulated team sprint (team sprint, 3 × 3-min all-out with 3-min rest) on a double-poling ergometer. Triceps brachii oxygenation was measured by near-infrared spectroscopy. RESULTS From pretraining to posttraining, peak power output in the RSA was increased (P < 0.01) to the same extent (29% ± 13% vs 26% ± 18%, nonsignificant) in RSH and in RSN whereas the number of sprints performed was enhanced in RSH (10.9 ± 5.2 vs 17.1 ± 6.8, P < 0.01) but not in RSN (11.6 ± 5.3 vs 11.7 ± 4.3, nonsignificant). In addition, the amplitude in total hemoglobin variations during sprints throughout RSA rose more in RSH (P < 0.01). Similarly, the average power output during all team sprints improved by 11% ± 9% in RSH and 15% ± 7% in RSN. CONCLUSIONS Our findings reveal greater improvement in the performance of repeated double-poling sprints, together with larger variations in the perfusion of upper body muscles in RSH compared with those in RSN.


Phlebology | 2011

Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise:

Billy Sperlich; Matthias Haegele; Krüger M; Thorsten Schiffer; Hans-Christer Holmberg; Joachim Mester

Objective The effects of knee-high socks that applied different levels of compression (0, 10, 20, 30 and 40 mmHg) on various cardio-respiratory and metabolic parameters during submaximal running were analysed. Methods Fifteen well-trained, male endurance athletes (age: 22.2 ± 1.3 years; peak oxygen uptake: 57.2 ± 4.0 mL/minute/kg) performed a ramp test to determine peak oxygen uptake. Thereafter, all athletes carried out five periods of submaximal running (at approximately 70% of peak oxygen uptake) with and without compression socks that applied the different levels of pressure. Cardiac output and index, stroke volume, arterio-venous difference in oxygen saturation, oxygen uptake, arterial oxygen saturation, heart rate and blood lactate were monitored before and during all of these tests. Results Cardiac output (P = 0.29) and index (P = 0.27), stroke volume (P = 0.50), arterio-venous difference in oxygen saturation (P = 0.11), oxygen uptake (P = 1.00), arterial oxygen saturation (P = 1.00), heart rate (P = 1.00) and arterial lactate concentration (P = 1.00) were unaffected by compression (effect sizes = 0.00–0.65). Conclusion This first evaluation of the potential effects of increasing levels of compression on cardio-respiratory and metabolic parameters during submaximal exercise revealed no effects whatsoever.


Frontiers in Physiology | 2015

The training intensity distribution among well-trained and elite endurance athletes

Thomas Stöggl; Billy Sperlich

Researchers have retrospectively analyzed the training intensity distribution (TID) of nationally and internationally competitive athletes in different endurance disciplines to determine the optimal volume and intensity for maximal adaptation. The majority of studies present a “pyramidal” TID with a high proportion of high volume, low intensity training (HVLIT). Some world-class athletes appear to adopt a so-called “polarized” TID (i.e., significant % of HVLIT and high-intensity training) during certain phases of the season. However, emerging prospective randomized controlled studies have demonstrated superior responses of variables related to endurance when applying a polarized TID in well-trained and recreational individuals when compared with a TID that emphasizes HVLIT or threshold training. The aims of the present review are to: (1) summarize the main responses of retrospective and prospective studies exploring TID; (2) provide a systematic overview on TIDs during preparation, pre-competition, and competition phases in different endurance disciplines and performance levels; (3) address whether one TID has demonstrated greater efficacy than another; and (4) highlight research gaps in an effort to direct future scientific studies.


Physiological Reports | 2016

A 3‐week multimodal intervention involving high‐intensity interval training in female cancer survivors: a randomized controlled trial

Joachim Schmitt; Nathalie Lindner; Monika Reuss-Borst; Hans-Christer Holmberg; Billy Sperlich

To compare the effects of a 3‐week multimodal rehabilitation involving supervised high‐intensity interval training (HIIT) on female breast cancer survivors with respect to key variables of aerobic fitness, body composition, energy expenditure, cancer‐related fatigue, and quality of life to those of a standard multimodal rehabilitation program. A randomized controlled trial design was administered. Twenty‐eight women, who had been treated for cancer were randomly assigned to either a group performing exercise of low‐to‐moderate intensity (LMIE; n = 14) or a group performing high‐intensity interval training (HIIT; n = 14) as part of a 3‐week multimodal rehabilitation program. No adverse events related to the exercise were reported. Work economy improved following both HIIT and LMIE, with improved peak oxygen uptake following LMIE. HIIT reduced mean total body fat mass with no change in body mass, muscle or fat‐free mass (best P < 0.06). LMIE increased muscle and total fat‐free body mass. Total energy expenditure (P = 0.45) did not change between the groups, whereas both improved quality of life to a similar high extent and lessened cancer‐related fatigue. This randomized controlled study demonstrates that HIIT can be performed by female cancer survivors without adverse health effects. Here, HIIT and LMIE both improved work economy, quality of life and cancer‐related fatigue, body composition or energy expenditure. Since the outcomes were similar, but HIIT takes less time, this may be a time‐efficient strategy for improving certain aspects of the health of female cancer survivors.


Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology | 2014

A novel compression garment with adhesive silicone stripes improves repeated sprint performance – a multi-experimental approach on the underlying mechanisms

Dennis-Peter Born; Hans-Christer Holmberg; Florian Goernert; Billy Sperlich

BackgroundRepeated sprint performance is determined by explosive production of power, as well as rapid recovery between successive sprints, and there is evidence that compression garments and sports taping can improve both of these factors.MethodsIn each of two sub-studies, female athletes performed two sets of 30 30-m sprints (one sprint per minute), one set wearing compression garment with adhesive silicone stripes (CGSS) intended to mimic taping and the other with normal clothing, in randomized order. Sub-study 1 (n = 12) focused on cardio-respiratory, metabolic, hemodynamic and perceptual responses, while neuronal and biomechanical parameters were examined in sub-study 2 (n = 12).ResultsIn both sub-studies the CGSS improved repeated sprint performance during the final 10 sprints (best P < 0.01, d = 0.61). None of the cardio-respiratory or metabolic variables monitored were altered by wearing this garment (best P = 0.06, d = 0.71). Also during the final 10 sprints, rating of perceived exertion by the upper leg muscles was reduced (P = 0.01, d = 1.1), step length increased (P = 0.01, d = 0.91) and activation of the m. rectus femoris elevated (P = 0.01, d = 1.24), while the hip flexion angle was lowered throughout the protocol (best P < 0.01, d = 2.28) and step frequency (best P = 0.34, d = 0.2) remained unaltered.ConclusionAlthough the physiological parameters monitored were unchanged, the CGSS appears to improve performance during 30 30-m repeated sprints by reducing perceived exertion and altering running technique.

Collaboration


Dive into the Billy Sperlich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Zinner

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Joachim Mester

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Achtzehn

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Matthias Haegele

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Wahl

German Sport University Cologne

View shared research outputs
Top Co-Authors

Avatar

Thorsten Schiffer

German Sport University Cologne

View shared research outputs
Researchain Logo
Decentralizing Knowledge