Biman Jana
Indian Association for the Cultivation of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biman Jana.
Nucleic Acids Research | 2016
Subhendu K. Das; Ishita Rehman; Arijit Ghosh; Souvik Sengupta; Papiya Majumdar; Biman Jana; Benu Brata Das
Topoisomerase 1 (Top1) is essential for removing the DNA supercoiling generated during replication and transcription. Anticancer drugs like camptothecin (CPT) and its clinical derivatives exert their cytotoxicity by reversibly trapping Top1 in covalent complexes on the DNA (Top1cc). Poly(ADP-ribose) polymerase (PARP) catalyses the addition of ADP-ribose polymers (PAR) onto itself and Top1. PARP inhibitors enhance the cytotoxicity of CPT in the clinical trials. However, the molecular mechanism by which PARylation regulates Top1 nuclear dynamics is not fully understood. Using live-cell imaging of enhanced green fluorescence tagged-human Top1, we show that PARP inhibitors (Veliparib, ABT-888) delocalize Top1 from the nucleolus to the nucleoplasm, which is independent of Top1–PARP1 interaction. Using fluorescence recovery after photobleaching and subsequent fitting of the data employing kinetic modelling we demonstrate that ABT-888 markedly increase CPT-induced bound/immobile fraction of Top1 (Top1cc) across the nuclear genome, suggesting Top1-PARylation counteracts CPT-induced stabilization of Top1cc. We further show Trp205 and Asn722 of Top1 are critical for subnuclear dynamics. Top1 mutant (N722S) was restricted to the nucleolus in the presence of CPT due to its deficiency in the accumulation of CPT-induced Top1-PARylation and Top1cc formation. This work identifies ADP-ribose polymers as key determinant for regulating Top1 subnuclear dynamics.
Journal of Chemical Physics | 2016
Rajdeep Chowdhury; Somen Nandi; Ritaban Halder; Biman Jana; Kankan Bhattacharyya
Structural relaxation of the acridine orange (AO) dimer in bulk water and inside a single live lung cell is studied using time resolved confocal microscopy and molecular dynamics (MD) simulations. The emission maxima (λem (max)∼ 630 nm) of AO in a lung cancer cell (A549) and a non-cancer lung fibroblast cell (WI38) suggest that AO exists as a dimer inside the cell. Time-dependent red shift in emission maximum indicates dynamic relaxation of the AO dimer (in the excited state) with a time constant of 500-600 ps, both in bulk water and inside the cell. We have calculated the equilibrium relaxation dynamics of the AO dimer in the ground state using MD simulations and found a slow component of time scale ∼ 350 ps. The intra- and inter-molecular components of the total relaxation dynamics of the AO dimer reveal the presence of a slow component of the order of a few hundred picoseconds. Upon restricting intra-molecular dye dynamics by harmonic constraint between AO monomers, the slow component vanishes. Combining the experimental observations and MD simulation results, we ascribe the slow component of the dynamic relaxation of the AO dimer to the structural relaxation, namely, fluctuations in the distance between the two monomers and associated fluctuation in the number of water molecules.
Journal of Chemical Physics | 2016
Md. Asif Amin; Ritaban Halder; Catherine Ghosh; Biman Jana; Kankan Bhattacharyya
Effect of ethanol on the size and structure of a protein cytochrome C (Cyt C) is investigated using fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. For FCS studies, Cyt C is covalently labeled with a fluorescent probe, alexa 488. FCS studies indicate that on addition of ethanol, the size of the protein varies non-monotonically. The size of Cyt C increases (i.e., the protein unfolds) on addition of alcohol (ethanol) up to a mole fraction of 0.2 (44.75% v/v) and decreases at higher alcohol concentration. In order to provide a molecular origin of this structural transition, we explore the conformational free energy landscape of Cyt C as a function of radius of gyration (Rg) at different compositions of water-ethanol binary mixture using MD simulations. Cyt C exhibits a minimum at Rg ∼ 13 Å in bulk water (0% alcohol). Upon increasing ethanol concentration, a second minimum appears in the free energy surface with gradually larger Rg up to χEtOH ∼ 0.2 (44.75% v/v). This suggests gradual unfolding of the protein. At a higher concentration of alcohol (χEtOH > 0.2), the minimum at large Rg vanishes, indicating compaction. Analysis of the contact map and the solvent organization around protein indicates a preferential solvation of the hydrophobic residues by ethanol up to χEtOH = 0.2 (44.75% v/v) and this causes the gradual unfolding of the protein. At high concentration (χEtOH = 0.3 (58% v/v)), due to structural organization in bulk water-ethanol binary mixture, the extent of preferential solvation by ethanol decreases. This causes a structural transition of Cyt C towards a more compact state.
PLOS Computational Biology | 2016
Biman Jana; José N. Onuchic
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.
Journal of Chemical Physics | 2016
Saptarsi Mondal; Ritaban Halder; Biswajit Biswas; Biman Jana; Prashant Chandra Singh
The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2-F⋯H -(CHF) type of electrostatic interaction over CF2-F⋯F -(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2-F⋯H -(CHF) hydrogen bond. On the other hand, in TFE, C-F⋯ F-C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Qian Wang; Michael R. Diehl; Biman Jana; Margaret S. Cheung; Anatoly B. Kolomeisky; José N. Onuchic
Significance Successful functioning of biological systems depends on efficient cellular transport supported by several classes of active biological molecules known as motor proteins. Although they have been intensively studied using various experimental methods, their molecular properties remain not fully understood. We developed a theoretical approach by using structure-based molecular dynamics simulations. It allowed us to understand at the molecular level the effect of external forces on kinesin motor proteins. It is shown that a force-regulated coupling between the neck linker and the ATP binding site of a kinesin accounts for experimentally observed weak susceptibility to loads. Our framework helps us to rationalize the low cooperativity among kinesins. The presented method is a powerful tool in clarifying microscopic features of motor proteins. Motor proteins are active enzymatic molecules that support important cellular processes by transforming chemical energy into mechanical work. Although the structures and chemomechanical cycles of motor proteins have been extensively investigated, the sensitivity of a motor’s velocity in response to a force is not well-understood. For kinesin, velocity is weakly influenced by a small to midrange external force (weak susceptibility) but is steeply reduced by a large force. Here, we utilize a structure-based molecular dynamic simulation to study the molecular origin of the weak susceptibility for a single kinesin. We show that the key step in controlling the velocity of a single kinesin under an external force is the ATP release from the microtubule-bound head. Only under large loading forces can the motor head release ATP at a fast rate, which significantly reduces the velocity of kinesin. It underpins the weak susceptibility that the velocity will not change at small to midrange forces. The molecular origin of this velocity reduction is that the neck linker of a kinesin only detaches from the motor head when pulled by a large force. This prompts the ATP binding site to adopt an open state, favoring ATP release and reducing the velocity. Furthermore, we show that two load-bearing kinesins are incapable of equally sharing the load unless they are very close to each other. As a consequence of the weak susceptibility, the trailing kinesin faces the challenge of catching up to the leading one, which accounts for experimentally observed weak cooperativity of kinesins motors.
Physical Chemistry Chemical Physics | 2016
Mandira Dutta; Biman Jana
Dyneins, a class of motor proteins consisting of six AAA+ modules (AAA1-AAA6), convert chemical energy derived from the hydrolysis of ATP into mechanical energy to walk along the microtubule track towards its minus end while accomplishing various cellular tasks including the transportation of various intracellular cargos. In a full mechanochemical cycle, dynein goes through ATP binding induced open to closed state transition of AAA1, hydrolysis of that ATP and closed to open state transition induced by the release of hydrolysed products along with linker remodelling in different nucleotide states. Here we built structure based models (SBMs) to explore the sequence of events of this mechanochemical cycle from structural aspects. Free energy and kinetic simulation approaches on a multi-basin SBM of dynein reveal the following pathways: (1) in the closing pathway, the AAA1 domain first converts to a closed state followed by the movement of the linker and (2) in the opening transition, initially the AAA1 domain partially opens up and then the complete linker movement takes place followed by the complete opening of the AAA1 domain. In the opening transition, we have observed two intermediate states from our simulations where the AAA1 domain is partially opened. However, in one state the linker is at a closed position and in the other the linker is at an open position. The existence of such intermediates (Pi released, ADP bound state) of dynein has been suggested by numerous experimental studies earlier. Finally, we discuss the biological relevance of this sequence of events in terms of processivity and efficiency of the cycle. The current study also shows how the basic principle of protein folding can be extended to understand complex phenomena like the stepping mechanism of motor proteins.
Journal of Physical Chemistry B | 2018
Sandipan Chakraborty; Biman Jana
Ice recognition by antifreeze proteins (AFPs) is a subject of topical interest. Among several classes of AFPs, insect AFPs are hyperactive presumably due to their ability to adsorb on basal plane. However, the origin of the basal plane binding specificity is not clearly known. Present work aims to provide atomistic insight into the origin of basal plane recognition by an insect antifreeze protein. Free energy calculations reveal that the order of binding affinity of the AFP toward different ice planes is basal plane > prism plane > pyramidal plane. Critical insight reveals that the observed plane specificity is strongly correlated with the number and their instantaneous fluctuations of clathrate water forming hydrogen bonds with both ice binding surface (IBS) of AFP and ice surface, thus anchoring AFP to the ice surface. On basal plane, anchored clathrate water array is highly stable due to exact match in the periodicity of oxygen atom repeat distances of the ice surface and the threonine repeat distances at the IBS. The stability of anchored clathrate water array progressively decreases upon prism and pyramidal plane adsorption due to mismatch between the threonine ladder and oxygen atom repeat distance. Further analysis reveals that hydration around the methyl side-chains of threonine residues becomes highly significant at low temperature which stabilizes the anchored clathrate water array and dual hydrogen-bonding is a consequence of this stability. Structural insight gained from this study paves the way for rational designing of highly potent antifreeze-mimetic with potential industrial applications.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Mandira Dutta; Michael R. Diehl; José N. Onuchic; Biman Jana
Significance Motor proteins are important biological machines responsible for cellular transport. Malfunctioning of them causes several neurodegenerative diseases. We searched for a molecular-level answer for malfunctioning kinesin, which causes hereditary spastic paraplegia (HSP) disease. Using explicit solvent simulation, the thermodynamic integration (TI) method, and bioinformatics analysis, we explored how four HSP mutants of kinesin perturb microtubule (MT) binding and motor dimerization. Taking these observations into account, we developed a coarse-grained structure-based model to reveal the effect of these mutations on kinesin’s order–disorder transition, which leads to the processivity and directionality of kinesin. Our study potentially uncovers a molecular-level picture of the role of some HSP mutants and its broad aspect in kinesin mechanochemistry. A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order–disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Qian Wang; Biman Jana; Michael R. Diehl; Margaret S. Cheung; Anatoly B. Kolomeisky; José N. Onuchic
Significance Cell physiology strongly depends on motor proteins to transport and regulate the intracellular distributions of key materials and organelles. Cytoplasmic dynein, one of the most important biological motors in living cells, is an efficient retrograde motor due to its ability to step continuously along microtubule filaments. Dynein has two identical domains that are coordinated by interhead tension. However, the molecular mechanism of this coordination is not understood. By combining computer simulations with analytical calculations, we show that the interhead tension creates opposite torques on the leading and trailing heads, crucial for the coordination between the heads. Our finding provides a molecular basis for understanding the functionality of cytoplasmic dynein. Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the β registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the β registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.