Bin Alwi Zilfalil
Universiti Sains Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bin Alwi Zilfalil.
Science | 2009
Mahmood Ameen Abdulla; Ikhlak Ahmed; Anunchai Assawamakin; Jong Bhak; Samir K. Brahmachari; Gayvelline C. Calacal; Amit Chaurasia; Chien-Hsiun Chen; Jieming Chen; Yuan-Tsong Chen; Jiayou Chu; Eva Maria Cutiongco-de la Paz; Maria Corazon A. De Ungria; Frederick C. Delfin; Juli Edo; Suthat Fuchareon; Ho Ghang; Takashi Gojobori; Junsong Han; Sheng Feng Ho; Boon Peng Hoh; Wei Huang; Hidetoshi Inoko; Pankaj Jha; Timothy A. Jinam; Li Jin; Jongsun Jung; Daoroong Kangwanpong; Jatupol Kampuansai; Giulia C. Kennedy
Patterns of Early Migration In order to gain insight into various migrations that must have happened during movement of early humans into Asia and the subsequent populating of the largest continent on Earth, the HUGO Pan-Asian SNP Consortium (p. 1541) analyzed genetic variation in almost 2000 individuals representing 73 Asian and two non-Asian populations. The results suggest that there may have been a single major migration of people into Asia and a subsequent south-to-north migration across the continent. While most populations from the same linguistic group tend to cluster together in terms of relatedness, several do not, clustering instead with their geographic neighbors, suggesting either substantial recent mixing among the populations or language replacement. Furthermore, data from indigenous Taiwanese populations appear to be inconsistent with the idea of a Taiwan homeland for Austronesian populations. Genetic analyses of Asian peoples suggest that the continent was populated through a single migration event. Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.
Brain & Development | 2009
Watihayati Ms; Hayati Fatemeh; Marzuki Marini; Wan Mohd Zahiruddin; Teguh Haryo Sasongko; Thean-Hock Tang; Z.A.M.H. Zabidi-Hussin; Hisahide Nishio; Bin Alwi Zilfalil
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
Journal of Human Genetics | 2011
Iman Salahshourifar; Ahmad Sukari Halim; Wan Azman Wan Sulaiman; Bin Alwi Zilfalil
Oral clefts are clinically and genetically heterogeneous disorders that are influenced by both genetic and environmental factors. The present family-based association study investigated the role of the MSX1 and TGFB3 genes in the etiology of non-syndromic oral cleft in a Malay population. No transmission distortion was found in the transmission disequilibrium analysis for either MSX1-CA or TGFB3-CA intragenic markers, whereas TGFB3-CA exhibited a trend to excess maternal transmission. In sequencing the MSX1 coding regions in 124 patients with oral cleft, five variants were found, including three known variants (A34G, G110G and P147Q) and two novel variants (M37L and G267A). The P147Q and M37L variants were not observed in 200 control chromosomes, whereas G267A was found in one control sample, indicating a very rare polymorphic variant. Furthermore, the G110G variant displayed a significant association between patients with non-syndromic cleft lip, with or without cleft palate, and normal controls (P=0.001, odds ratio=2.241, 95% confidence interval, 1.357–3.700). Therefore, these genetic variants may contribute, along with other genetic and environmental factors, to this condition.
BMC Medical Genetics | 2011
Alyaa Al-Khateeb; Mohd K Zahri; Mohd Sapawi Mohamed; Teguh Haryo Sasongko; Suhairi Ibrahim; Zurkurnai Yusof; Bin Alwi Zilfalil
BackgroundFamilial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements.ResultsA total of 29 gene sequence variants were reported in 117(76.0%) of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation), and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45). The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants.ConclusionsTwenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.
American Journal of Medical Genetics Part A | 2010
Iman Salahshourifar; Ahmad Sukari Halim; Wan Azman Wan Sulaiman; Bin Alwi Zilfalil
We describe a chromosome 6 uniparental disomy (UPD6) in a boy, discovered during a screening for the genetic cause of cleft lip and palate. In the medical literature, almost all documented cases of UPD6 are paternal in origin, and only four were maternal. We present here a report of complete maternal chromosome 6 uniparental heterodisomy. Haplotype analysis was performed using highly polymorphic short tandem repeat (STR) markers that span both arms of chromosome 6. Analysis of these markers revealed the presence of two maternal alleles but no paternal allele, indicating an instance of maternal uniparental heterodisomy. Chromosome analysis of peripheral blood lymphocytes confirmed a normal male karyotype. Advanced maternal age at the time of the infants birth and heterodisomy of markers around the centromere favors a meiosis‐I error. No specific phenotype has been reported for maternal UPD6. Therefore, the cleft lip and palate in the present case probably occurred due to other risk factors. This report provides further evidence that maternal UPD6 has no specific clinical consequences and adds to the collective knowledge of this rare chromosomal finding.
Genetic Testing and Molecular Biomarkers | 2011
Marjanu Hikmah Elias; Ravindran Ankathil; Abdul Razak Salmi; Wanna Sudhikaran; Pornprot Limprasert; Bin Alwi Zilfalil
Fragile X Syndrome (FXS) is the most common form of inherited mental retardation in men. It is caused by abnormalities in the FMR1 gene that are associated with CGG repeat expansion and the hypermethylation status of its promoter. Methylated alleles lead to transcriptional inhibition and consequent loss of Fragile X Mental Retardation Protein. Chemical modification of cytosine to uracil by bisulfite treatment has proved to be an attractive method for DNA methylation studies that precludes labor-intensive Southern blot analysis, which is the gold standard test for FXS. In this report, bisulfite-treated DNA samples were amplified using real-time multiplex methylation-specific polymerase chain reaction followed by melting curve analysis. Our results show that all control samples with known CGG repeat numbers and methylation statuses were correctly diagnosed. The samples from 43 male patients were also successfully diagnosed, which were in complete agreement with the results of Southern blotting. By such means, 39 patients were found to have an unmethylated allele; 3, a fully mutated allele; and 1, both methylated and unmethylated alleles, thus implying a diagnosis of mosaicism. In conclusion, we find our method to be convenient for screening a large number of male patients with FXS, because it is rapid and easy to perform, especially when there is a low quantity of DNA that must be sensitively and accurately assayed.
Pediatric Research | 2010
Surini Yusoff; Atsuko Takeuchi; Chitose Ashi; Masako Tsukada; Nur H Ma'Amor; Bin Alwi Zilfalil; Narazah Mohd Yusoff; Tsutomu Nakamura; Midori Hirai; Indra Sari Kusuma Harahap; Myeong Jin Lee; Noriyuki Nishimura; Yutaka Takaoka; Satoru Morikawa; Ichiro Morioka; Naoki Yokoyama; Masafumi Matsuo; Hisahide Nishio; Hans Van Rostenberghe
The uridine diphosphoglucuronate-glucuronosyltransferase 1A1 (UGT1A1) gene encodes the enzyme responsible for bilirubin glucuronidation. To evaluate the contribution of UGT1A1 promoter mutations to neonatal jaundice, we determined the genotypes of c.-3279T>G, c.-3156G>A, and A(TA)7TAA in Malay infants with neonatal jaundice (patients) and in infants without neonatal jaundice (controls). In our population study, only c.-3279T>G was associated with neonatal jaundice. The genotype distributions between both groups were significantly different (p = 0.003): the frequency of homozygosity for c.-3279G was much higher in patients than those in controls. Allele frequency of c.-3279G was significantly higher in patients than those in controls (p = 0.006). We then investigated changes in transcriptional activity because of c.-3279T>G. Luciferase reporter assay in HepG2 cells demonstrated that transcriptional activity of the c.-3279G allele was significantly lower than that of the c.-3279T allele in both the absence and presence of bilirubin. Luciferase reporter assay in COS-7 cells elucidated that c.-3279T>G modified the synergistic effects of the nuclear factors associated with transcriptional machinery. In conclusion, the c.-3279T>G mutation in the UGT1A1 promoter is a genetic risk factor for neonatal jaundice.
BMC Research Notes | 2015
Hashim Halim-Fikri; Ali Etemad; Ahmad Zubaidi A. Latif; Amir Feisal Merican; Atif Amin Baig; Azlina Ahmad Annuar; Endom Ismail; Iman Salahshourifar; Ahmad Tajudin Liza-Sharmini; Marini Ramli; Mohamed Irwan Shah; Muhammad Farid Johan; Nik Norliza Nik Hassan; Noraishah M. Abdul-Aziz; Noor Haslina Mohd Noor; Ab Rajab Nur-Shafawati; Rosline Hassan; Rosnah Bahar; Rosnah Binti Zain; Shafini Mohamed Yusoff; Surini Yusoff; Soon Guan Tan; Meow-Keong Thong; Hatin Wan-Isa; Wan Zaidah Abdullah; Zahurin Mohamed; Zarina Abdul Latiff; Bin Alwi Zilfalil
BackgroundThe Malaysian Node of the Human Variome Project (MyHVP) is one of the eighteen official Human Variome Project (HVP) country-specific nodes. Since its inception in 9th October 2010, MyHVP has attracted the significant number of Malaysian clinicians and researchers to participate and contribute their data to this project. MyHVP also act as the center of coordination for genotypic and phenotypic variation studies of the Malaysian population. A specialized database was developed to store and manage the data based on genetic variations which also associated with health and disease of Malaysian ethnic groups. This ethnic-specific database is called the Malaysian Node of the Human Variome Project database (MyHVPDb).FindingsCurrently, MyHVPDb provides only information about the genetic variations and mutations found in the Malays. In the near future, it will expand for the other Malaysian ethnics as well. The data sets are specified based on diseases or genetic mutation types which have three main subcategories: Single Nucleotide Polymorphism (SNP), Copy Number Variation (CNV) followed by the mutations which code for the common diseases among Malaysians. MyHVPDb has been open to the local researchers, academicians and students through the registration at the portal of MyHVP (http://hvpmalaysia.kk.usm.my/mhgvc/index.php?id=register).ConclusionsThis database would be useful for clinicians and researchers who are interested in doing a study on genomics population and genetic diseases in order to obtain up-to-date and accurate information regarding the population-specific variations and also useful for those in countries with similar ethnic background.
Human Mutation | 2012
George P. Patrinos; Timothy D. Smith; Heather J. Howard; Fahd Al-Mulla; Lotfi Chouchane; Andreas Hadjisavvas; Sherifa A. Hamed; Xi Tao Li; Makia J. Marafie; Rajkumar Ramesar; Feliciano J. Ramos; Thomy de Ravel; Mona O. El-Ruby; Tilak Ram Shrestha; María Jesús Sobrido; Ghazi O. Tadmouri; Martina Witsch-Baumgartner; Bin Alwi Zilfalil; Arleen D. Auerbach; Kevin Carpenter; Garry R. Cutting; Vu Chi Dung; Wayne W. Grody; Julia A. Hasler; Lynn B. Jorde; Jim Kaput; Milan Macek; Yoichi Matsubara; Carmancita Padilla; Helen M. Robinson
The Human Variome Project (http://www.humanvariomeproject.org) is an international effort aiming to systematically collect and share information on all human genetic variation. The two main pillars of this effort are gene/disease‐specific databases and a network of Human Variome Project Country Nodes. The latter are nationwide efforts to document the genomic variation reported within a specific population. The development and successful operation of the Human Variome Project Country Nodes are of utmost importance to the success of Human Variome Projects aims and goals because they not only allow the genetic burden of disease to be quantified in different countries, but also provide diagnosticians and researchers access to an up‐to‐date resource that will assist them in their daily clinical practice and biomedical research, respectively. Here, we report the discussions and recommendations that resulted from the inaugural meeting of the International Confederation of Countries Advisory Council, held on 12th December 2011, during the 2011 Human Variome Project Beijing Meeting. We discuss the steps necessary to maximize the impact of the Country Node effort for developing regional and country‐specific clinical genetics resources and summarize a few well‐coordinated genetic data collection initiatives that would serve as paradigms for similar projects. Hum Mutat 33:1513–1519, 2012.
Journal of Digestive Diseases | 2013
Sathiya Maran; Yeong Yeh Lee; Shu Hua Xu; Mahendra Sundramoorthy Raj; Noorizan Abdul Majid; Keng Ee Choo; Bin Alwi Zilfalil; David Y. Graham
To identify gene polymorphisms that differ between Malays, Han Chinese and South Indians, and to identify candidate genes for the investigation of their role in protecting Malays from Helicobacter pylori (H. pylori) infection.