Bin Xin
Beijing Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bin Xin.
systems man and cybernetics | 2012
Bin Xin; Jie Chen; Juan Zhang; Hao Fang; Zhihong Peng
Differential evolution (DE) and particle swarm optimization (PSO) are two formidable population-based optimizers (POs) that follow different philosophies and paradigms, which are successfully and widely applied in scientific and engineering research. The hybridization between DE and PSO represents a promising way to create more powerful optimizers, especially for specific problem solving. In the past decade, numerous hybrids of DE and PSO have emerged with diverse design ideas from many researchers. This paper attempts to comprehensively review the existing hybrids based on DE and PSO with the goal of collection of different ideas to build a systematic taxonomy of hybridization strategies. Taking into account five hybridization factors, i.e., the relationship between parent optimizers, hybridization level, operating order (OO), type of information transfer (TIT), and type of transferred information (TTI), we propose several classification mechanisms and a versatile taxonomy to differentiate and analyze various hybridization strategies. A large number of hybrids, which include the hybrids of DE and PSO and several other representative hybrids, are categorized according to the taxonomy. The taxonomy can be utilized not only as a tool to identify different hybridization strategies, but also as a reference to design hybrid optimizers. The tradeoff between exploration and exploitation regarding hybridization design is discussed and highlighted. Based on the taxonomy proposed, this paper also indicates several promising lines of research that are worthy of devotion in future.
systems man and cybernetics | 2009
Jie Chen; Bin Xin; Zhihong Peng; Lihua Dou; Juan Zhang
Global optimization process can often be divided into two subprocesses: exploration and exploitation. The tradeoff between exploration and exploitation (T:Er&Ei) is crucial in search and optimization, having a great effect on global optimization performance, e.g., accuracy and convergence speed of optimization algorithms. In this paper, definitions of exploration and exploitation are first given based on information correlation among samplings. Then, some general indicators of optimization hardness are presented to characterize problem difficulties. By analyzing a typical contraction-based three-stage optimization process, optimal contraction theorem is presented to show that T:Er&Ei depends on the optimization hardness of problems to be optimized. T:Er&Ei will gradually lean toward exploration as optimization hardness increases. In the case of great optimization hardness, exploration-dominated optimizers outperform exploitation-dominated optimizers. In particular, random sampling will become an outstanding optimizer when optimization hardness reaches a certain degree. Besides, the optimal number of contraction stages increases with optimization hardness. In an optimal contraction way, the whole sampling cost is evenly distributed in all contraction stages, and each contraction takes the same contracting ratio. Furthermore, the characterization of optimization hardness is discussed in detail. The experiments with several typical global optimization algorithms used to optimize three groups of test problems validate the correctness of the conclusions made by T:Er&Ei analysis.
systems man and cybernetics | 2011
Bin Xin; Jie Chen; Zhihong Peng; Lihua Dou; Juan Zhang
In this paper, we propose an efficient rule-based heuristic to solve asset-based dynamic weapon-target assignment (DWTA) problems. The main idea of the proposed heuristic is to utilize the domain knowledge of DWTA problems to directly achieve weapon assignment, without large number of function evaluations. We update the saturation states of constraints in the assignment process to guarantee the feasibility of generated solutions. For the purpose of testing the performance of the proposed heuristic, we build a general Monte Carlo simulation-based DWTA framework. For comparison, we also employ a Monte Carlo method (MCM) to make DWTA decisions in different defense scenarios. From simulations with DWTA instances under different scales, the heuristic has obvious advantages over the MCM with regard to solution quality and computation time. The proposed method can solve large-scale DWTA problems (e.g., those including 100 weapons, 100 targets, and four defense stages) within only a few seconds.
systems man and cybernetics | 2010
Bin Xin; Jie Chen; Juan Zhang; Lihua Dou; Zhihong Peng
The dynamic weapon-target assignment (DWTA) problem is a typical constrained combinatorial optimization problem with the objective of maximizing the total value of surviving assets threatened by hostile targets through all defense stages. A generic asset-based DWTA model is established, especially for the warfare scenario of force coordination, to formulate this problem. Four categories of constraints, involving capability constraints, strategy constraints, resource constraints (i.e., ammunition constraints), and engagement feasibility constraints, are taken into account in the DWTA model. The concept of virtual permutation (VP) is proposed to facilitate the generation of feasible decisions. A construction procedure (CP) converts VPs into feasible DWTA decisions. With constraint satisfaction guaranteed by the synergy of VPs and the CP, an elaborate local search (LS) operator, namely move-to-head operator, is constructed to avoid repeatedly generating the same decisions. The operator is integrated into two tabu search (TS) algorithms to solve DWTA problems. Comparative experiments involving a random sampling method, an LS method, a hybrid genetic algorithm, a hybrid ant-colony optimization algorithm, and our TS algorithms show that the proposed TS heuristics for DWTA outperform their competitors in most test cases and they are competent for high-quality real-time DWTA decision makings.
Science in China Series F: Information Sciences | 2010
Bin Xin; Jie Chen; Zhihong Peng; Feng Pan
This paper presents extensive experiments on a hybrid optimization algorithm (DEPSO) we recently developed by combining the advantages of two powerful population-based metaheuristics—differential evolution (DE) and particle swarm optimization (PSO). The hybrid optimizer achieves on-the-fly adaptation of evolution methods for individuals in a statistical learning way. Two primary parameters for the novel algorithm including its learning period and population size are empirically analyzed. The dynamics of the hybrid optimizer is revealed by tracking and analyzing the relative success ratio of PSO versus DE in the optimization of several typical problems. The comparison between the proposed DEPSO and its competitors involved in our previous research is enriched by using multiple rotated functions. Benchmark tests involving scalability test validate that the DEPSO is competent for the global optimization of numerical functions due to its high optimization quality and wide applicability.
Applied Soft Computing | 2013
Chunmei Zhang; Jie Chen; Bin Xin
As a population-based optimizer, the differential evolution (DE) algorithm has a very good reputation for its competence in global search and numerical robustness. In view of the fact that each member of the population is evaluated individually, DE can be easily parallelized in a distributed way. This paper proposes a novel distributed memetic differential evolution algorithm which integrates Lamarckian learning and Baldwinian learning. In the proposed algorithm, the whole population is divided into several subpopulations according to the von Neumann topology. In order to achieve a better tradeoff between exploration and exploitation, the differential evolution as an evolutionary frame is assisted by the Hooke-Jeeves algorithm which has powerful local search ability. We incorporate the Lamarckian learning and Baldwinian learning by analyzing their characteristics in the process of migration among subpopulations as well as in the hybridization of DE and Hooke-Jeeves local search. The proposed algorithm was run on a set of classic benchmark functions and compared with several state-of-the-art distributed DE schemes. Numerical results show that the proposed algorithm has excellent performance in terms of solution quality and convergence speed for all test problems given in this study.
Science in China Series F: Information Sciences | 2009
Jie Chen; Bin Xin; Zhihong Peng; Lihua Dou; Juan Zhang
The dynamic weapon-target assignment (DWTA) problem is an important issue in the field of military command and control. An asset-based DWTA optimization model was proposed with four kinds of constraints considered, including capability constraints, strategy constraints, resource constraints and engagement feasibility constraints. A general “virtual” representation of decisions was presented to facilitate the generation of feasible decisions. The representation is in essence the permutation of all assignment pairs. A construction procedure converts the permutations into real feasible decisions. In order to solve this problem, three evolutionary decision-making algorithms, including a genetic algorithm and two memetic algorithms, were developed. Experimental results show that the memetic algorithm based on greedy local search can generate obviously better DWTA decisions, especially for large-scale problems, than the genetic algorithm and the memetic algorithm based on steepest local search.
Engineering Optimization | 2013
Guanghui Wang; Jie Chen; Tao Cai; Bin Xin
This article proposes a decomposition-based multi-objective differential evolution particle swarm optimization (DMDEPSO) algorithm for the design of a tubular permanent magnet linear synchronous motor (TPMLSM) which takes into account multiple conflicting objectives. In the optimization process, the objectives are evaluated by an artificial neural network response surface (ANNRS), which is trained by the samples of the TPMSLM whose performances are calculated by finite element analysis (FEA). DMDEPSO which hybridizes differential evolution (DE) and particle swarm optimization (PSO) together, first decomposes the multi-objective optimization problem into a number of single-objective optimization subproblems, each of which is associated with a Pareto optimal solution, and then optimizes these subproblems simultaneously. PSO updates the position of each particle (solution) according to the best information about itself and its neighbourhood. If any particle stagnates continuously, DE relocates its position by using two different particles randomly selected from the whole swarm. Finally, based on the DMDEPSO, optimization is gradually carried out to maximize the thrust of TPMLSM and minimize the ripple, permanent magnet volume, and winding volume simultaneously. The result shows that the optimized TPMLSM meets or exceeds the performance requirements. In addition, comparisons with chosen algorithms illustrate the effectiveness of DMDEPSO to find the Pareto optimal solutions for the TPMLSM optimization problem.
IEEE Transactions on Systems, Man, and Cybernetics | 2017
Hao Fang; Yue Wei; Jie Chen; Bin Xin
The problem of flocking of second-order multiagent systems with connectivity preservation is investigated in this paper. First, for estimating the algebraic connectivity as well as the corresponding eigenvector, a new decentralized inverse power iteration scheme is formulated. Then, based on the estimation of the algebraic connectivity, a set of distributed gradient-based flocking control protocols is built with a new class of generalized hybrid potential fields which could guarantee collision avoidance, desired distance stabilization, and the connectivity of the underlying communication network simultaneously. What is important is that the proposed control scheme allows the existing edges to be broken without violation of connectivity constraints, and thus yields more flexibility of motions and reduces the communication cost for the multiagent system. In the end, nontrivial comparative simulations and experimental results are performed to demonstrate the effectiveness of the theoretical results and highlight the advantages of the proposed estimation scheme and control algorithm.
IEEE Transactions on Systems, Man, and Cybernetics | 2016
Jie Chen; Xing Zhang; Bin Xin; Hao Fang
The coordination between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) is a proactive research topic whose great value of application has attracted vast attention. This paper outlines the motivations for studying the cooperative control of UAVs and UGVs, and attempts to make a comprehensive investigation and analysis on recent research in this field. First, a taxonomy for classification of existing unmanned aerial and ground vehicles systems (UAGVSs) is proposed, and a generalized optimization framework is developed to allow the decision-making problems for different types of UAGVSs to be described in a unified way. By following the proposed taxonomy, we show how different types of UAGVSs can be built to realize the goal of a common task, that is target tracking, and how optimization problems can be formulated for a UAGVS to perform specific tasks. This paper presents an optimization perspective to model and analyze different types of UAGVSs, and serves as a guidance and reference for developing UAGVSs.