Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bin-Zhi Qian is active.

Publication


Featured researches published by Bin-Zhi Qian.


Cell | 2010

Macrophage Diversity Enhances Tumor Progression and Metastasis

Bin-Zhi Qian; Jeffrey W. Pollard

There is persuasive clinical and experimental evidence that macrophages promote cancer initiation and malignant progression. During tumor initiation, they create an inflammatory environment that is mutagenic and promotes growth. As tumors progress to malignancy, macrophages stimulate angiogenesis, enhance tumor cell migration and invasion, and suppress antitumor immunity. At metastatic sites, macrophages prepare the target tissue for arrival of tumor cells, and then a different subpopulation of macrophages promotes tumor cell extravasation, survival, and subsequent growth. Specialized subpopulations of macrophages may represent important new therapeutic targets.


Nature | 2011

CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis

Bin-Zhi Qian; Jiufeng Li; Hui Zhang; Takanori Kitamura; Jinghang Zhang; Liam Campion; Elizabeth Kaiser; Linda A. Snyder; Jeffrey W. Pollard

Macrophages, which are abundant in the tumour microenvironment, enhance malignancy. At metastatic sites, a distinct population of metastasis-associated macrophages promotes the extravasation, seeding and persistent growth of tumour cells. Here we define the origin of these macrophages by showing that Gr1-positive inflammatory monocytes are preferentially recruited to pulmonary metastases but not to primary mammary tumours in mice. This process also occurs for human inflammatory monocytes in pulmonary metastases of human breast cancer cells. The recruitment of these inflammatory monocytes, which express CCR2 (the receptor for chemokine CCL2), as well as the subsequent recruitment of metastasis-associated macrophages and their interaction with metastasizing tumour cells, is dependent on CCL2 synthesized by both the tumour and the stroma. Inhibition of CCL2–CCR2 signalling blocks the recruitment of inflammatory monocytes, inhibits metastasis in vivo and prolongs the survival of tumour-bearing mice. Depletion of tumour-cell-derived CCL2 also inhibits metastatic seeding. Inflammatory monocytes promote the extravasation of tumour cells in a process that requires monocyte-derived vascular endothelial growth factor. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer. Our data provide the mechanistic link between these two clinical associations and indicate new therapeutic targets for treating metastatic breast cancer.


PLOS ONE | 2009

A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth

Bin-Zhi Qian; Yan Deng; Jae Hong Im; Ruth J. Muschel; Yiyu Zou; Jiufeng Li; Richard A. Lang; Jeffrey W. Pollard

Background The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown. Methodology/Principal Findings Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation. Conclusion/Significance These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target for treatment of metastatic disease.


Nature Reviews Immunology | 2015

Immune cell promotion of metastasis

Takanori Kitamura; Bin-Zhi Qian; Jeffrey W. Pollard

Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells.


Cancer Discovery | 2015

Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage–Derived VEGFA

Allison S. Harney; Esther N. Arwert; David Entenberg; Yarong Wang; Peng Guo; Bin-Zhi Qian; Maja H. Oktay; Jeffrey W. Pollard; Joan G. Jones; John Condeelis

UNLABELLED Dissemination of tumor cells is an essential step in metastasis. Direct contact between a macrophage, mammalian-enabled (MENA)-overexpressing tumor cell, and endothelial cell [Tumor MicroEnvironment of Metastasis (TMEM)] correlates with metastasis in breast cancer patients. Here we show, using intravital high-resolution two-photon microscopy, that transient vascular permeability and tumor cell intravasation occur simultaneously and exclusively at TMEM. The hyperpermeable nature of tumor vasculature is described as spatially and temporally heterogeneous. Using real-time imaging, we observed that vascular permeability is transient, restricted to the TMEM, and required for tumor cell dissemination. VEGFA signaling from TIE2(hi) TMEM macrophages causes local loss of vascular junctions, transient vascular permeability, and tumor cell intravasation, demonstrating a role for the TMEM within the primary mammary tumor. These data provide insight into the mechanism of tumor cell intravasation and vascular permeability in breast cancer, explaining the value of TMEM density as a predictor of distant metastatic recurrence in patients. SIGNIFICANCE Tumor vasculature is abnormal with increased permeability. Here, we show that VEGFA signaling from TIE2(hi) TMEM macrophages results in local, transient vascular permeability and tumor cell intravasation. These data provide evidence for the mechanism underlying the association of TMEM with distant metastatic recurrence, offering a rationale for therapies targeting TMEM.


Cancer Research | 2015

Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy

Russell Hughes; Bin-Zhi Qian; Charlotte Rowan; Munitta Muthana; Ioanna Keklikoglou; Oakley C. Olson; Simon Tazzyman; Sarah Danson; Christina L. Addison; Mark Clemons; Ana M. Gonzalez-Angulo; Johanna A. Joyce; Michele De Palma; Jeffrey W. Pollard; Claire E. Lewis

Tumor relapse after chemotherapy-induced regression is a major clinical problem, because it often involves inoperable metastatic disease. Tumor-associated macrophages (TAM) are known to limit the cytotoxic effects of chemotherapy in preclinical models of cancer. Here, we report that an alternatively activated (M2) subpopulation of TAMs (MRC1(+)TIE2(Hi)CXCR4(Hi)) accumulate around blood vessels in tumors after chemotherapy, where they promote tumor revascularization and relapse, in part, via VEGF-A release. A similar perivascular, M2-related TAM subset was present in human breast carcinomas and bone metastases after chemotherapy. Although a small proportion of M2 TAMs were also present in hypoxic tumor areas, when we genetically ablated their ability to respond to hypoxia via hypoxia-inducible factors 1 and 2, tumor relapse was unaffected. TAMs were the predominant cells expressing immunoreactive CXCR4 in chemotherapy-treated mouse tumors, with the highest levels expressed by MRC1(+) TAMs clustering around the tumor vasculature. Furthermore, the primary CXCR4 ligand, CXCL12, was upregulated in these perivascular sites after chemotherapy, where it was selectively chemotactic for MRC1(+) TAMs. Interestingly, HMOX-1, a marker of oxidative stress, was also upregulated in perivascular areas after chemotherapy. This enzyme generates carbon monoxide from the breakdown of heme, a gas known to upregulate CXCL12. Finally, pharmacologic blockade of CXCR4 selectively reduced M2-related TAMs after chemotherapy, especially those in direct contact with blood vessels, thereby reducing tumor revascularization and regrowth. Our studies rationalize a strategy to leverage chemotherapeutic efficacy by selectively targeting this perivascular, relapse-promoting M2-related TAM cell population.


Breast Cancer Research | 2012

Contribution of CXCL12 secretion to invasion of breast cancer cells

Pamela J. Boimel; Tatiana Smirnova; Zhen Ni Zhou; Jeffrey Wyckoff; Haein Park; Salvatore J. Coniglio; Bin-Zhi Qian; E. Richard Stanley; Dianne Cox; Jeffrey W. Pollard; William J. Muller; John Condeelis; Jeffrey E. Segall

IntroductionNeu (HER2/ErbB2) is overexpressed in 25% to 30% of human breast cancer, correlating with a poor prognosis. Researchers in previous studies who used the mouse mammary tumor virus Neu-transgenic mouse model (MMTV-Neu) demonstrated that the Neu-YB line had increased production of CXCL12 and increased metastasis, whereas the Neu-YD line had decreased metastasis. In this study, we examined the role of increased production of CXCL12 in tumor cell invasion and malignancy.MethodsWe studied invasion in the tumor microenvironment using multiphoton intravital imaging, in vivo invasion and intravasation assays. CXCL12 signaling was altered by using the CXCR4 inhibitor AMD3100 or by increasing CXCL12 expression. The role of macrophage signaling in vivo was determined using a colony-stimulating factor 1 receptor (CSF-1R) blocking antibody.ResultsThe Neu-YD strain was reduced in invasion, intravasation and metastasis compared to the Neu-YB and Neu deletion mutant (activated receptor) strains. Remarkably, in the Neu-YB strain, in vivo invasion to epidermal growth factor was dependent on both CXCL12-CXCR4 and CSF1-CSF-1R signaling. Neu-YB tumors had increased macrophage and microvessel density. Overexpression of CXCL12 in rat mammary adenocarcinoma cells increased in vivo invasion as well as microvessel and macrophage density.ConclusionsExpression of CXCL12 by tumor cells results in increased macrophage and microvessel density and in vivo invasiveness.


Cancer Research | 2014

Myeloid WNT7b Mediates the Angiogenic Switch and Metastasis in Breast Cancer

Eun-Jin Yeo; Luca Cassetta; Bin-Zhi Qian; Ian P. Lewkowich; Jiufeng Li; James A. Stefater; April N. Smith; Lisa Wiechmann; Yihong Wang; Jeffrey W. Pollard; Richard A. Lang

Oncogenic targets acting in both tumor cells and tumor stromal cells may offer special therapeutic appeal. Interrogation of the Oncomine database revealed that 52 of 53 human breast carcinomas showed substantial upregulation of WNT family ligand WNT7B. Immunolabeling of human mammary carcinoma showed that WNT7B immunoreactivity was associated with both tumor cells and with tumor-associated macrophages. In the MMTV-PymT mouse model of mammary carcinoma, we found tumor progression relied upon WNT7B produced by myeloid cells in the microenvironment. Wnt7b deletion in myeloid cells reduced the mass and volume of tumors due to a failure in the angiogenic switch. In the tumor overall, there was no change in expression of Wnt/β-catenin pathway target genes, but in vascular endothelial cells (VEC), expression of these genes was reduced, suggesting that VECs respond to Wnt/β-catenin signaling. Mechanistic investigations revealed that failure of the angiogenic switch could be attributed to reduced Vegfa mRNA and protein expression in VECs, a source of VEGFA mRNA in the tumor that was limiting in the absence of myeloid WNT7B. We also noted a dramatic reduction in lung metastasis associated with decreased macrophage-mediated tumor cell invasion. Together, these results illustrated the critical role of myeloid WNT7B in tumor progression, acting at the levels of angiogenesis, invasion, and metastasis. We suggest that therapeutic suppression of WNT7B signaling might be advantageous due to targeting multiple aspects of tumor progression.


Cancer Research | 2009

Loss of retinal cadherin facilitates mammary tumor progression and metastasis

Georgia Agiostratidou; Maomi Li; Kimita Suyama; Ines Badano; Rinat Keren; Su Chung; Amy Anzovino; James Hulit; Bin-Zhi Qian; Boumediene Bouzahzah; Eliseo A. Eugenin; Olivier Loudig; Greg R. Phillips; Joseph Locker; Rachel Hazan

The mammary epithelium is thought to be stabilized by cell-cell adhesion mediated mainly by E-cadherin (E-cad). Here, we show that another cadherin, retinal cadherin (R-cad), is critical for maintenance of the epithelial phenotype. R-cad is expressed in nontransformed mammary epithelium but absent from tumorigenic cell lines. In vivo, R-cad was prominently expressed in the epithelium of both ducts and lobules. In human breast cancer, R-cad was down-regulated with tumor progression, with high expression in ductal carcinoma in situ and reduced expression in invasive duct carcinomas. By comparison, E-cad expression persisted in invasive breast tumors and cell lines where R-cad was lost. Consistent with these findings, R-cad knockdown in normal mammary epithelium stimulated invasiveness and disrupted formation of acini despite continued E-cad expression. Conversely, R-cad overexpression in aggressive cell lines induced glandular morphogenesis and inhibited invasiveness, tumor formation, and lung colonization. R-cad also suppressed the matrix metalloproteinase 1 (MMP1), MMP2, and cyclooxygenase 2 gene expression associated with pulmonary metastasis. The data suggest that R-cad is an adhesion molecule of the mammary epithelium, which acts as a critical regulator of the normal phenotype. As a result, R-cad loss contributes to epithelial suppression and metastatic progression.


Breast Cancer Research | 2012

New tricks for metastasis-associated macrophages

Bin-Zhi Qian; Jeffrey W. Pollard

Recent studies on breast cancer lung metastasis have identified a new mechanism of tumor cell survival via signaling provided by metastasis-associated macrophages. Targeting these specialized host immune cells and their specific signals provides an attractive and potential therapeutic approach for treating the disease.

Collaboration


Dive into the Bin-Zhi Qian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiufeng Li

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun-Jin Yeo

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

John Condeelis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ran Xu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Xiaokun Zhao

Central South University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge