Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bina Fu is active.

Publication


Featured researches published by Bina Fu.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Depression of reactivity by the collision energy in the single barrier H +CD4 → HD+ CD3 reaction

Weiqing Zhang; Yong Zhou; Guorong Wu; Yunpeng Lu; Huilin Pan; Bina Fu; Quan Shuai; Lan Liu; Shu Liu; Liling Zhang; Bo Jiang; Dongxu Dai; Soo-Ying Lee; Zhen Xie; Bastiaan J. Braams; Joel M. Bowman; Michael A. Collins; Dong H. Zhang; Xueming Yang

Crossed molecular beam experiments and accurate quantum scattering calculations have been carried out for the polyatomic H + CD4 → HD + CD3 reaction. Unprecedented agreement has been achieved between theory and experiments on the energy dependence of the integral cross section in a wide collision energy region that first rises and then falls considerably as the collision energy increases far over the reaction barrier for this simple hydrogen abstraction reaction. Detailed theoretical analysis shows that at collision energies far above the barrier the incoming H-atom moves so quickly that the heavier D-atom on CD4 cannot concertedly follow it to form the HD product, resulting in the decline of reactivity with the increase of collision energy. We propose that this is also the very mechanism, operating in many abstraction reactions, which causes the differential cross section in the backward direction to decrease substantially or even vanish at collision energies far above the barrier height.


Journal of Chemical Physics | 2011

Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction

Yong Zhou; Bina Fu; Chunrui Wang; Michael A. Collins; Dong H. Zhang

A new full-dimensional potential energy surface for the title reaction has been constructed using the modified Shepard interpolation scheme. Energies and derivatives were calculated using the UCCSD(T) method with aug-cc-pVTZ and 6-311++G(3df,2pd) basis sets, respectively. A total number of 30,000 data points were selected from a huge number of molecular configurations sampled by trajectory method. Quantum dynamical calculations showed that the potential energy surface is well converged for the number of data points for collision energy up to 2.5 eV. Total reaction probabilities and integral cross sections were calculated on the present surface, as well as on the ZBB3 and EG-2008 surfaces for the title reaction. Satisfactory agreements were achieved between the present and the ZBB3 potential energy surfaces, indicating we are approaching the final stage to obtain a global potential energy surface of quantitative accuracy for this benchmark polyatomic system. Our calculations also showed that the EG-2008 surface is less accurate than the present and ZBB3 surfaces, particularly in high energy region.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy

Zefeng Ren; Li Che; Minghui Qiu; Xingan Wang; Wenrui Dong; Dongxu Dai; Xiuyan Wang; Xueming Yang; Zhigang Sun; Bina Fu; Soo-Y. Lee; Xin Xu; Dong H. Zhang

Reaction resonances are transiently trapped quantum states along the reaction coordinate in the transition state region of a chemical reaction that could have profound effects on the dynamics of the reaction. Obtaining an accurate reaction potential that holds these reaction resonance states and eventually modeling quantitatively the reaction resonance dynamics is still a great challenge. Up to now, the only viable way to obtain a resonance potential is through high-level ab initio calculations. Through highly accurate crossed-beam reactive scattering studies on isotope-substituted reactions, the accuracy of the resonance potential could be rigorously tested. Here we report a combined experimental and theoretical study on the resonance-mediated F + HD → HF + D reaction at the full quantum state resolved level, to probe the resonance potential in this benchmark system. The experimental result shows that isotope substitution has a dramatic effect on the resonance picture of this important system. Theoretical analyses suggest that the full-dimensional FH2 ground potential surface, which was believed to be accurate in describing the resonance picture of the F + H2 reaction, is found to be insufficiently accurate in predicting quantitatively the resonance picture for the F + HD → HF + D reaction. We constructed a global potential energy surface by using the CCSD(T) method that could predict the correct resonance peak positions as well as the dynamics for both F + H2 → HF + H and F + HD → HF + D, providing an accurate resonance potential for this benchmark system with spectroscopic accuracy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: Experiment validates theory

Bina Fu; Yong-Chang Han; Joel M. Bowman; Luca Angelucci; Nadia Balucani; Francesca Leonori; Piergiorgio Casavecchia

The O(3P) + C2H4 reaction, of importance in combustion and atmospheric chemistry, stands out as a paradigm reaction involving triplet- and singlet-state potential energy surfaces (PESs) interconnected by intersystem crossing (ISC). This reaction poses challenges for theory and experiments owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Primary products from five competing channels (H + CH2CHO, H + CH3CO, H2 + CH2CO, CH3 + HCO, CH2 + CH2O) and branching ratios (BRs) are determined in crossed molecular beam experiments with soft electron-ionization mass-spectrometric detection at a collision energy of 8.4 kcal/mol. As some of the observed products can only be formed via ISC from triplet to singlet PESs, from the product BRs the extent of ISC is inferred. A new full-dimensional PES for the triplet state as well as spin-orbit coupling to the singlet PES are reported, and roughly half a million surface hopping trajectories are run on the coupled singlet-triplet PESs to compare with the experimental BRs and differential cross-sections. Both theory and experiment find almost equal contributions from the two PESs to the reaction, posing the question of how important is it to consider the ISC as one of the nonadiabatic effects for this and similar systems involved in combustion chemistry. Detailed comparisons at the level of angular and translational energy distributions between theory and experiment are presented for the two primary channel products, CH3 + HCO and H + CH2CHO. The agreement between experimental and theoretical functions is excellent, implying that theory has reached the capability of describing complex multichannel nonadiabatic reactions.


Journal of the American Chemical Society | 2011

Three-State Trajectory Surface Hopping Studies of the Photodissociation Dynamics of Formaldehyde on ab Initio Potential Energy Surfaces

Bina Fu; Benjamin C. Shepler; Joel M. Bowman

Full-dimensional, three-state, surface hopping calculations of the photodissociation dynamics of formaldehyde are reported on ab initio potential energy surfaces (PESs) for electronic states S(1), T(1), and S(0). This is the first such study initiated on S(1) with ab initio-calculated spin-orbit couplings among the three states. We employ previous PESs for S(0) and T(1), and a new PES for S(1), which we describe here, as well as new spin-orbit couplings. The time-dependent electronic state populations and the branching ratio of radical products produced from S(0) and T(1) states and that of total radical products and molecular products at three total energies are calculated. Details of the surface hopping dynamics are described, and a novel pathway for isomerization on T(1) via S(0) is reported. Final translational energy distributions of H + HCO products from S(0) and T(1) are also reported as well as the translational energy distribution and final rovibrational distributions of H(2) products from the molecular channel. The present results are compared to previous trajectory calculations initiated from the global minimum of S(0). The roaming pathway leading to low rotational distribution of CO and high vibrational population of H(2) is observed in the present calculations.


Proceedings of the National Academy of Sciences of the United States of America | 2008

HF(v′ = 3) forward scattering in the F + H2 reaction: Shape resonance and slow-down mechanism

Xingan Wang; Wenrui Dong; Minghui Qiu; Zefeng Ren; Li Che; Dongxu Dai; Xiuyan Wang; Xueming Yang; Zhigang Sun; Bina Fu; Soo-Y. Lee; Xin Xu; Dong H. Zhang

Crossed molecular beam experiments and accurate quantum dynamics calculations have been carried out to address the long standing and intriguing issue of the forward scattering observed in the F + H2 → HF(v′ = 3) + H reaction. Our study reveals that forward scattering in the reaction channel is not caused by Feshbach or dynamical resonances as in the F + H2 → HF(v′ = 2) + H reaction. It is caused predominantly by the slow-down mechanism over the centrifugal barrier in the exit channel, with some small contribution from the shape resonance mechanism in a very small collision energy regime slightly above the HF(v′ = 3) threshold. Our analysis also shows that forward scattering caused by dynamical resonances can very likely be accompanied by forward scattering in a different product vibrational state caused by a slow-down mechanism.


Journal of Chemical Physics | 2008

A hierarchical construction scheme for accurate potential energy surface generation: An application to the F+H2 reaction

Bina Fu; Xin Xu; Dong H. Zhang

We present a hierarchical construction scheme for accurate ab initio potential energy surface generation. The scheme is based on the observation that when molecular configuration changes, the variation in the potential energy difference between different ab initio methods is much smaller than the variation for potential energy itself. This means that it is easier to numerically represent energy difference to achieve a desired accuracy. Because the computational cost for ab initio calculations increases very rapidly with the accuracy, one can gain substantial saving in computational time by constructing a high accurate potential energy surface as a sum of a low accurate surface based on extensive ab initio data points and an energy difference surface for high and low accuracy ab initio methods based on much fewer data points. The new scheme was applied to construct an accurate ground potential energy surface for the FH(2) system using the coupled-cluster method and a very large basis set. The constructed potential energy surface is found to be more accurate on describing the resonance states in the FH(2) and FHD systems than the existing surfaces.


Journal of Chemical Physics | 2013

Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

Tianhui Liu; Bina Fu; Dong H. Zhang

The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the title molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.


Journal of Chemical Physics | 2013

Mode specificity in the H + H2O → H2 + OH reaction: a full-dimensional quantum dynamics study.

Bina Fu; Dong H. Zhang

The initial state-selected time-dependent wave packet approach to an atom-triatom reaction is employed to study the H + H2O → H2 + OH reaction without the centrifugal sudden approximation. The total reaction probabilities and integral cross sections, which are the exact coupled-channel results, are calculated for the H2O reactant initially in the ground and several vibrationally excited states, including bending excited states, first and second stretching excited states, and simultaneous excitations of both bending and stretching modes. The reactivity enhancements from different initial states of the H2O reagent are presented and discussed in detail. The thermal rate constant for the title reaction and the contributions to this coefficient from individual vibrational states of H2O are also obtained and compared with the previous theoretical and experimental data.


Journal of Chemical Physics | 2012

Experimental and theoretical studies of the O(3P) + C2H4 reaction dynamics: collision energy dependence of branching ratios and extent of intersystem crossing.

Bina Fu; Yong-Chang Han; Joel M. Bowman; Francesca Leonori; Nadia Balucani; Luca Angelucci; Angela Occhiogrosso; Raffaele Petrucci; Piergiorgio Casavecchia

The reaction of O((3)P) with C(2)H(4), of importance in combustion and atmospheric chemistry, stands out as paradigm reaction involving not only the indicated triplet state potential energy surface (PES) but also an interleaved singlet PES that is coupled to the triplet surface. This reaction poses great challenges for theory and experiment, owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Crossed molecular beam (CMB) scattering experiments with soft electron ionization detection are used to disentangle the dynamics of this polyatomic multichannel reaction at a collision energy E(c) of 8.4 kcal∕mol. Five different primary products have been identified and characterized, which correspond to the five exothermic competing channels leading to H + CH(2)CHO, H + CH(3)CO, CH(3) + HCO, CH(2) + H(2)CO, and H(2) + CH(2)CO. These experiments extend our previous CMB work at higher collision energy (E(c) ∼ 13 kcal∕mol) and when the results are combined with the literature branching ratios from kinetics experiments at room temperature (E(c) ∼ 1 kcal∕mol), permit to explore the variation of the branching ratios over a wide range of collision energies. In a synergistic fashion, full-dimensional, QCT surface hopping calculations of the O((3)P) + C(2)H(4) reaction using ab initio PESs for the singlet and triplet states and their coupling, are reported at collision energies corresponding to the CMB and the kinetics ones. Both theory and experiment find almost an equal contribution from the triplet and singlet surfaces to the reaction, as seen from the collision energy dependence of branching ratios of product channels and extent of intersystem crossing (ISC). Further detailed comparisons at the level of angular distributions and translational energy distributions are made between theory and experiment for the three primary radical channel products, H + CH(2)CHO, CH(3) + HCO, and CH(2) + H(2)CO. The very good agreement between theory and experiment indicates that QCT surface-hopping calculations, using reliable coupled multidimensional PESs, can yield accurate dynamical information for polyatomic multichannel reactions in which ISC plays an important role.

Collaboration


Dive into the Bina Fu's collaboration.

Top Co-Authors

Avatar

Dong H. Zhang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianhui Liu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Xueming Yang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Yong Zhou

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Zhaojun Zhang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Eugene Kamarchik

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Donghui Zhang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Dongxu Dai

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Kejie Shao

Dalian Institute of Chemical Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge