Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bindong Liu is active.

Publication


Featured researches published by Bindong Liu.


PLOS ONE | 2013

PTEN Loss Increases PD-L1 Protein Expression and Affects the Correlation between PD-L1 Expression and Clinical Parameters in Colorectal Cancer

Minmin Song; De-Feng Chen; Biyan Lu; Chenliang Wang; J Zhang; Lanlan Huang; Xiaoyan Wang; Christine L. Timmons; Jun Hu; Bindong Liu; Xiaojian Wu; Lei Wang; Jianping Wang; Huanliang Liu

Background Programmed death ligand-1 (PD-L1) has been identified as a factor associated with poor prognosis in a range of cancers, and was reported to be mainly induced by PTEN loss in gliomas. However, the clinical effect of PD-L1 and its regulation by PTEN has not yet been determined in colorectal cancer (CRC). In the present study, we verified the regulation of PTEN on PD-L1 and further determined the effect of PTEN on the correlation between PD-L1 expression and clinical parameters in CRC. Methods/Results RNA interference approach was used to down-regulate PTEN expression in SW480, SW620 and HCT116 cells. It was showed that PD-L1 protein, but not mRNA, was significantly increased in cells transfected with siRNA PTEN compared with the negative control. Moreover, the capacity of PTEN to regulate PD-L1 expression was not obviously affected by IFN-γ, the main inducer of PD-L1. Tissue microarray immunohistochemistry was used to detect PD-L1 and PTEN in 404 CRC patient samples. Overexpression of PD-L1 was significantly correlated with distant metastasis (P<0.001), TNM stage (P<0.01), metastatic progression (P<0.01) and PTEN expression (P<0.001). Univariate analysis revealed that patients with high PD-L1 expression had a poor overall survival (P<0.001). However, multivariate analysis did not support PD-L1 as an independent prognostic factor (P = 0.548). Univariate (P<0.001) and multivariate survival (P<0.001) analysis of 310 located CRC patients revealed that high level of PD-L1 expression was associated with increased risks of metastatic progression. Furthermore, the clinical effect of PD-L1 on CRC was not statistically significant in a subset of 39 patients with no PTEN expression (distant metastasis: P = 0.102; TNM stage: P = 0.634, overall survival: P = 0.482). Conclusions PD-L1 can be used to identify CRC patients with high risk of metastasis and poor prognosis. This clinical manifestation may be partly associated with PTEN expression.


PLOS ONE | 2014

Transcytosis of HIV-1 through vaginal epithelial cells is dependent on trafficking to the endocytic recycling pathway.

Ballington L. Kinlock; Yudi Wang; Tiffany M. Turner; Chenliang Wang; Bindong Liu

Background While it is accepted that viruses can enter epithelial cells by endocytosis, the lack of an established biological mechanism for the trafficking of infectious virions through vaginal epithelial cells and their release from the plasma membrane has contributed to ongoing controversy about whether endocytosis is a mere artifact of some cell culture systems and whether squamous vaginal epithelial cells are even relevant as it pertains to HIV-1 transmission. Methodology/Principal Findings In this study, we investigated the intracellular trafficking pathway that HIV-1 exploits to transcytose vaginal epithelial cells. The reduction of endosome tubulation by recycling endosome inhibitors blocked transcytosis of HIV-1 in a cell culture and transwell system. In addition, we demonstrate that although heat-inactivated virus was endocytosed as efficiently as native virus, heat-inactivated virus was trafficked exclusively to the lysosomal pathway for degradation following endocytosis. Lysosomal protease-specific inhibitors blocked the degradation of inactivated virions. Immunofluorescence analysis not only demonstrated that HIV-1 was inside the cells but the different colocalization pattern of native vs. heat inactivated virus with transferrin provided conclusive evidence that HIV-1 uses the recycling pathway to get across vaginal epithelial cells. Conclusions/Significance Altogether, our findings demonstrate the precise intracellular trafficking pathway utilized by HIV-1 in epithelial cells, confirms that HIV-1 transcytosis through vaginal epithelial cells is a biological phenomenon and brings to light the differential intracellular trafficking of native vs heat-inactivated HIV-1 which with further exploration could prove to provide valuable insights that could be used in the prevention of transcytosis/transmission of HIV-1 across the mucosal epithelia.


Journal of Virology | 2011

N-Terminal Hemagglutinin Tag Renders Lysine-Deficient APOBEC3G Resistant to HIV-1 Vif-Induced Degradation by Reduced Polyubiquitination

Yudi Wang; Qiujia Shao; Xianghui Yu; Wei Kong; James E. K. Hildreth; Bindong Liu

ABSTRACT APOBEC3G, a potent HIV-1 host restriction factor, is overcome by HIV-1 viral infectivity factor (Vif), which induces its polyubiquitination and proteasomal degradation. Here we show that lysine-deficient APOBEC3G with an N-terminal hemagglutinin (HA) tag fusion (HA-A3G20K/R) was resistant to HIV-1 Vif-induced proteasomal degradation. HA-A3G20K/R molecules were packaged into wild-type HIV-1 particles, and HA-A3G20K/R drastically decreased wild-type HIV-1 reverse transcription products and infectivity. We also showed that the N terminus of A3G was a target of polyubiquitination induced by HIV-1 Vif. Thus, fusion of the HA tag to the N terminus of A3G20K/R reduced its polyubiquitination, the likely mechanism for the resistance of this protein to HIV-1 Vif-induced proteasomal degradation. Finding such ways to induce resistance of A3G to Vif may provide new approaches to anti-HIV/AIDS therapy.


Journal of Virology | 2010

Polyubiquitination of APOBEC3G Is Essential for Its Degradation by HIV-1 Vif

Qiujia Shao; Yudi Wang; James E. K. Hildreth; Bindong Liu

ABSTRACT Proteasomal degradation of APOBEC3G is a critical step for human immunodeficiency virus type 1 (HIV-1) replication. However, the necessity for polyubiquitination of APOBEC3G in this process is still controversial. In this study, we showed that although macaque simian immunodeficiency virus (SIVmac) Vif is more stable than HIV-1 Vif in human cells, SIVmac Vif induces degradation of APBOEC3G as efficiently as HIV-1 Vif. Overexpression of APOBEC3G or lysine-free APOBEC3G stabilized HIV-1 Vif, indicating that APOBEC3G degradation is independent of the degradation of Vif. Furthermore, an in vivo polyubiquitination assay showed that lysine-free APOBEC3G was also polyubiquitinated. These data suggest that polyubiquitination of APOBEC3G, not that of HIV-1 Vif, is crucial for APOBEC3G degradation.


The Journal of Infectious Diseases | 2013

GB Virus Type C E2 Protein Inhibits Human Immunodeficiency Virus Type 1 Assembly Through Interference With HIV-1 Gag Plasma Membrane Targeting

Christine L. Timmons; Qiujia Shao; Chenliang Wang; Ling Liu; Huanliang Liu; Xinhong Dong; Bindong Liu

GB virus type C (GBV-C) is a single-stranded positive-sense RNA virus classified in the Flaviviridae family. Persistent coinfection with GBV-C is associated with lower human immunodeficiency virus type 1 (HIV-1) load, higher CD4(+) T-cell count, and prolonged survival in HIV-1 coinfected patients. The GBV-C envelope glycoprotein E2 has been reported to interfere with HIV-1 entry. In this study, we showed that the expression of GBV-C E2 inhibited HIV-1 Gag assembly and release. Expression of glycosylated GBV-C E2 inhibited HIV-1 Gag precursor processing, resulting in lower production of CAp24 and MAp17, while the overall expression level of the Gag precursor Pr55 remained unchanged. Membrane floatation gradient and indirect immunofluorescence confocal microscopy analysis showed that glycosylated E2 disrupted HIV-1 Gag trafficking to the plasma membrane, resulting in Gag accumulation in subcellular compartments. This interference in HIV-1 Gag trafficking led to diminished HIV-1 particle production, which is a critical step for HIV-1 to infect new host cells. These findings shed light on a novel mechanism used by GBV-C E2 to inhibit HIV-1 replication and may provide insight into new approaches for suppressing HIV-1 replication.


PLOS ONE | 2014

Heat-stable molecule derived from Streptococcus cristatus induces APOBEC3 expression and inhibits HIV-1 replication

Ziqing Wang; Yi Luo; Qiujia Shao; Ballington L. Kinlock; Chenliang Wang; James E. K. Hildreth; Hua Xie; Bindong Liu

Although most human immunodeficiency virus type 1 (HIV-1) cases worldwide are transmitted through mucosal surfaces, transmission through the oral mucosal surface is a rare event. More than 700 bacterial species have been detected in the oral cavity. Despite great efforts to discover oral inhibitors of HIV, little information is available concerning the anti-HIV activity of oral bacterial components. Here we show that a molecule from an oral commensal bacterium, Streptococcus cristatus CC5A can induce expression of APOBEC3G (A3G) and APOBEC3F (A3F) and inhibit HIV-1 replication in THP-1 cells. We show by qRT-PCR that expression levels of A3G and A3F increase in a dose-dependent manner in the presence of a CC5A extract, as does A3G protein levels by Western blot assay. In addition, when the human monocytic cell line THP-1 was treated with CC5A extract, the replication of HIV-1 IIIB was significantly suppressed compared with IIIB replication in untreated THP-1 cells. Knock down of A3G expression in THP-1 cells compromised the ability of CC5A to inhibit HIV-1 IIIB infectivity. Furthermore, SupT1 cells infected with virus produced from CC5A extract-treated THP-1 cells replicated virus with a higher G to A hypermutation rate (a known consequence of A3G activity) than virus used from untreated THP-1 cells. This suggests that S. cristatus CC5A contains a molecule that induces A3G/F expression and thereby inhibits HIV replication. These findings might lead to the discovery of a novel anti-HIV/AIDS therapeutic.


Retrovirology | 2014

HIV-1 Vif inhibits G to A hypermutations catalyzed by virus-encapsidated APOBEC3G to maintain HIV-1 infectivity

Yudi Wang; Ballington L. Kinlock; Qiujia Shao; Tiffany M. Turner; Bindong Liu

BackgroundHIV-1 viral infectivity factor (Vif) is an essential accessory protein for HIV-1 replication. The predominant function of Vif is to counteract Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G, A3G), a potent host restriction factor that inhibits HIV-1 replication. Vif mediates the proteasomal degradation of A3G and inhibits A3G translation, thus diminishing the pool of A3G that is available to be packaged into budding virion. Although Vif is robust in degrading A3G, the protection provided against A3G is not absolute. Clinical and laboratory evidence have shown that A3G is not completely excluded from HIV-1 viral particles during HIV-1 replication. It remains unclear why the viral samples are still infectious when A3G has been packaged into the virions.ResultsIn this study, we provide evidence that Vif continues to protect HIV-1 from the deleterious effects of A3G, even after packaging of A3G has occurred. When equal amounts of A3G were packaged into budding virions, the virus expressing functional Vif was more infectious and incurred fewer G to A hypermutations in the second round of infection compared to Vif-deficient virus. A Vif mutant with a defect in viral packaging showed a reduced ability to protect the HIV-1 genome from G to A hypermutations.ConclusionOur data suggest that even packaged A3G is still under the tyranny of Vif. Our work brings to light an additional caveat for any therapy that hopes to exploit the Vif-A3G axis. The ideal strategy would not only enhance A3G viral packaging, but also reduce HIV-1 Vif viral encapsidation.


Journal of Molecular Biology | 2016

Differential Contributions of Ubiquitin-Modified APOBEC3G Lysine Residues to HIV-1 Vif-Induced Degradation

Tiffany M. Turner; Qiujia Shao; Weiran Wang; Yudi Wang; Chenliang Wang; Ballington L. Kinlock; Bindong Liu

Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation.


Oncotarget | 2015

GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1

Chenliang Wang; Christine L. Timmons; Qiujia Shao; Ballington L. Kinlock; Tiffany M. Turner; Aikichi Iwamoto; Hui Zhang; Huanliang Liu; Bindong Liu

GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2s potential for a new therapeutic approach for treating HIV-1.


Scientific Reports | 2018

Role of Porphyromonas gingivalis outer membrane vesicles in oral mucosal transmission of HIV

Xinhong Dong; Meng-Hsuan Ho; Bindong Liu; James E. K. Hildreth; Chandravanu Dash; J. Shawn Goodwin; Muthukumar Balasubramaniam; Chin Ho Chen; Hua Xie

The association between mucosal microbiota and HIV-1 infection has garnered great attention in the field of HIV-1 research. Previously, we reported a receptor-independent HIV-1 entry into epithelial cells mediated by a Gram-negative invasive bacterium, Porphyromonas gingivalis. Here, we present evidence showing that P. gingivalis outer membrane vesicles (OMVs) promote mucosal transmission of HIV-1. We demonstrated, using the Dynabeads technology, a specific interaction between HIV-1 and P. gingivalis OMVs which led to an OMV-dependent viral entry into oral epithelial cells. HIV-1 was detected in human oral keratinocytes (HOKs) after a 20 minute exposure to the HIV-vesicle complexes. After entry, most of the complexes appeared to dissociate, HIV-1 was reverse-transcribed, and viral DNA was integrated into the genome of HOKs. Meanwhile, some of the complexes exited the original host and re-entered neighboring HOKs and permissive cells of HIV-1. Moreover, P. gingivalis vesicles enhanced HIV-1 infection of MT4 cells at low infecting doses that are not able to establish an efficient infection alone. These findings suggest that invasive bacteria and their OMVs with ability to interact with HIV-1 may serve as a vehicle to translocate HIV through the mucosa, establish mucosal transmission of HIV-1, and enhance HIV-1 infectivity.

Collaboration


Dive into the Bindong Liu's collaboration.

Top Co-Authors

Avatar

Qiujia Shao

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yudi Wang

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Xie

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar

Xinhong Dong

Meharry Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge