Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bindumadhav M. Marathe is active.

Publication


Featured researches published by Bindumadhav M. Marathe.


Cellular Microbiology | 2011

Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion

Henju Marjuki; Alex Gornitzky; Bindumadhav M. Marathe; Natalia A. Ilyushina; Jerry R. Aldridge; Gururao Desai; Richard J. Webby; Robert G. Webster

The vacuolar (H+)‐ATPases (V‐ATPases) facilitate the release of influenza A virus (IAV) genome into the cytoplasm by acidifying the endosomal interior. The regulation of V‐ATPases by signalling pathways has been demonstrated in various model systems. However, little is known about signalling‐regulated V‐ATPase activation during IAV infection. Here we show that V‐ATPase activity is elevated during infection of cell monolayers with IAV, as measured by intracellular pH change, via a mechanism mediated by extracellular signal‐regulated kinase (ERK) and phosphatidylinositol 3‐kinase (PI3K). Inhibition of IAV‐induced early activation of these kinases reduced V‐ATPase activity and the acidification of intracellular compartments in infected cells. IAV‐activated ERK and PI3K appear to interact directly, and they colocalize with the E subunit of V‐ATPase V1 domain. Further, siRNAs targeting the E2 subunit isoform significantly reduced virus titres. Interestingly, suppression of PI3K early activation, but not that of ERK or V‐ATPase, negatively affected virus internalization, suggesting the involvement of the pathway in earlier, V‐ATPase‐independent infection‐promoting events. Cell treatment with a V‐ATPase‐specific inhibitor impaired the nuclear localization of incoming viral ribonucleoproteins, inhibiting replication/transcription of viral RNAs. These findings highlight the importance of IAV‐induced ERK and PI3K early activation as signalling mediators in V‐ATPase‐stimulated endosomal acidification required for fusion.


Journal of Virology | 2010

Competitive Fitness of Oseltamivir-Sensitive and -Resistant Highly Pathogenic H5N1 Influenza Viruses in a Ferret Model

Elena A. Govorkova; Natalia A. Ilyushina; Bindumadhav M. Marathe; Jennifer L. McClaren; Robert G. Webster

ABSTRACT The fitness of oseltamivir-resistant highly pathogenic H5N1 influenza viruses has important clinical implications. We generated recombinant human A/Vietnam/1203/04 (VN; clade 1) and A/Turkey/15/06 (TK; clade 2.2) influenza viruses containing the H274Y neuraminidase (NA) mutation, which confers resistance to NA inhibitors, and compared the fitness levels of the wild-type (WT) and resistant virus pairs in ferrets. The VN-H274Y and VN-WT viruses replicated to similar titers in the upper respiratory tract (URT) and caused comparable disease signs, and none of the animals survived. On days 1 to 3 postinoculation, disease signs caused by oseltamivir-resistant TK-H274Y virus were milder than those caused by TK-WT virus, and all animals survived. We then studied fitness by using a novel approach. We coinoculated ferrets with different ratios of oseltamivir-resistant and -sensitive H5N1 viruses and measured the proportion of clones in day-6 nasal washes that contained the H274Y NA mutation. Although the proportion of VN-H274Y clones increased consistently, that of TK-H274Y virus decreased. Mutations within NA catalytic (R292K) and framework (E119A/K, I222L, H274L, and N294S) sites or near the NA enzyme active site (V116I, I117T/V, Q136H, K150N, and A250T) emerged spontaneously (without drug pressure) in both pairs of viruses. The NA substitutions I254V and E276A could exert a compensatory effect on the fitness of VN-H274Y and TK-H274Y viruses. NA enzymatic function was reduced in both drug-resistant H5N1 viruses. These results show that the H274Y NA mutation affects the fitness of two H5N1 influenza viruses differently. Our novel method of assessing viral fitness accounts for both virus-host interactions and virus-virus interactions within the host.


The Journal of Infectious Diseases | 2014

The Neuraminidase Inhibitor Oseltamivir Is Effective Against A/Anhui/1/2013 (H7N9) Influenza Virus in a Mouse Model of Acute Respiratory Distress Syndrome

Tatiana Baranovich; Andrew J. Burnham; Bindumadhav M. Marathe; Jianling Armstrong; Yi Guan; Yuelong Shu; Joseph Malik Sriyal Peiris; Richard J. Webby; Robert G. Webster; Elena A. Govorkova

BACKGROUND  High mortality and uncertainty about the effectiveness of neuraminidase inhibitors (NAIs) in humans infected with influenza A(H7N9) viruses are public health concerns. METHODS  Susceptibility of N9 viruses to NAIs was determined in a fluorescence-based assay. The NAI oseltamivir (5, 20, or 80 mg/kg/day) was administered to BALB/c mice twice daily starting 24, 48, or 72 hours after A/Anhui/1/2013 (H7N9) virus challenge. RESULTS  All 12 avian N9 and 3 human H7N9 influenza viruses tested were susceptible to NAIs. Without prior adaptation, A/Anhui/1/2013 (H7N9) caused lethal infection in mice that was restricted to the respiratory tract and resulted in pulmonary edema and acute lung injury with hyaline membrane formation, leading to decreased oxygenation, all characteristics of human acute respiratory distress syndrome. Oseltamivir at 20 and 80 mg/kg protected 80% and 88% of mice when initiated after 24 hours, and the efficacy decreased to 70% and 60%, respectively, when treatment was delayed by 48 hours. Emergence of oseltamivir-resistant variants was not detected. CONCLUSIONS  H7N9 viruses are comparable to currently circulating influenza A viruses in susceptibility to NAIs. Based on these animal studies, early treatment is associated with improved outcomes.


mSphere | 2016

Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals

Bryan S. Kaplan; Marion Russier; Trushar Jeevan; Bindumadhav M. Marathe; Elena A. Govorkova; Charles J. Russell; Mia Kim-Torchetti; Young Ki Choi; Ian H. Brown; Takehiko Saito; David E. Stallknecht; Scott Krauss; Richard J. Webby

Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses. ABSTRACT Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on other continents. The experiments and analyses presented here were designed to assess the impact of this genetic diversification on viral phenotypes, particularly as regards mammalian hosts, by comparing the North American viruses with their Eurasian precursor viruses.


Journal of Virology | 2014

Risk Assessment of H2N2 Influenza Viruses from the Avian Reservoir

Jeremy C. Jones; Tatiana Baranovich; Bindumadhav M. Marathe; Angela Danner; Jon P. Seiler; John Franks; Elena A. Govorkova; Scott Krauss; Robert G. Webster

ABSTRACT H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.


Antiviral Research | 2011

Assessment of the efficacy of the neuraminidase inhibitor oseltamivir against 2009 pandemic H1N1 influenza virus in ferrets.

Elena A. Govorkova; Bindumadhav M. Marathe; Ashley Prevost; Jerold E. Rehg; Robert G. Webster

Pandemic 2009 influenza A (H1N1) virus (H1N1pdm) is different from contemporary seasonal human viruses in that it can cause infection deep in the lungs of critical care patients. Here we establish a mammalian animal model and assessed the efficacy of the neuraminidase (NA) inhibitor oseltamivir treatment against H1N1pdm virus infection. Oseltamivir (25 mg/kg/day twice daily for 5 days) was orally administered to groups of ferrets, starting either 2 or 24 h after inoculation with 10(6)PFU of A/California/04/2009 (H1N1) influenza virus. We determined that virus replication was restricted to 1 or 2 of 4 lung lobes in oseltamivir-treated animals, while virus was consistently isolated from 4 of 4 lung lobes in control animals (1.5-3.8log(10)PFU/g). Analysis of arterial blood oxygenation revealed less pronounced changes in partial oxygen and carbon dioxide pressure in oseltamivir-treated ferrets, and histologic examination confirmed reduced pneumonia. Treated animals had significantly decreased inflammatory responses in the upper respiratory tract (P < 0.05), less fever and weight loss, and less reduction of activity. Virus titers in the nasal washes of treated and control ferrets did not differ significantly. NA sequencing and fluorescence-based phenotypic assays identified no oseltamivir-resistant variants. Overall, oseltamivir treatment decreases the signs of infection and reduced the spread of H1N1pdm influenza virus in the lungs of ferrets and therefore impeded the development of viral pneumonia.


Mbio | 2010

Does Pandemic A/H1N1 Virus Have the Potential To Become More Pathogenic?

Natalia A. Ilyushina; Mariette F. Ducatez; Jerold E. Rehg; Bindumadhav M. Marathe; Henju Marjuki; Nicolai V. Bovin; Robert G. Webster; Richard J. Webby

ABSTRACT Epidemiologic observations that have been made in the context of the current pandemic influenza virus include a stable virulence phenotype and a lack of propensity to reassort with seasonal strains. In an attempt to determine whether either of these observations could change in the future, we coinfected differentiated human airway cells with seasonal oseltamivir-resistant A/New Jersey/15/07 and pandemic A/Tennessee/1-560/09 (H1N1) viruses in three ratios (10:90, 50:50, and 90:10) and examined the resulting progeny viruses after 10 sequential passages. When the pandemic virus was initially present at multiplicities of infection equal to or greater than those for the seasonal virus, only pandemic virus genotypes were detected. These adapted pandemic strains did, however, contain two nonsynonymous mutations (hemagglutinin K154Q and polymerase acidic protein L295P) that conferred a more virulent phenotype, both in cell cultures and in ferrets, than their parental strains. The polymerase acidic protein mutation increased polymerase activity at 37°C, and the hemagglutinin change affected binding of the virus to α2,6-sialyl receptors. When the seasonal A/H1N1 virus was initially present in excess, the dominant progeny virus was a reassortant containing the hemagglutinin gene from the seasonal strain and the remaining genes from the pandemic virus. Our study demonstrates that the emergence of an A/H1N1 pandemic strain of higher virulence is possible and that, despite their lack of detection thus far in humans, viable seasonal/pandemic virus reassortants can be generated. IMPORTANCE This report supplies a key piece of information for investigating future evolution scenarios of pandemic A/H1N1 influenza in the human population. We report that the emergence of an A/H1N1 pandemic strain of higher virulence is possible and that, despite their lack of detection thus far in humans, viable seasonal/pandemic virus reassortants can be generated. This report supplies a key piece of information for investigating future evolution scenarios of pandemic A/H1N1 influenza in the human population. We report that the emergence of an A/H1N1 pandemic strain of higher virulence is possible and that, despite their lack of detection thus far in humans, viable seasonal/pandemic virus reassortants can be generated.


Antimicrobial Agents and Chemotherapy | 2014

Fitness Costs for Influenza B Viruses Carrying Neuraminidase Inhibitor-Resistant Substitutions: Underscoring the Importance of E119A and H274Y

Andrew J. Burnham; Tatiana Baranovich; Bindumadhav M. Marathe; Jianling Armstrong; Robert G. Webster; Elena A. Govorkova

ABSTRACT Influenza B viruses cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated pediatric mortality. Neuraminidase (NA) inhibitors (NAIs) are the only available therapy for patients infected with influenza B viruses, and the potential emergence of NAI-resistant viruses is a public health concern. The NA substitutions located within the enzyme active site could not only reduce NAI susceptibility of influenza B virus but also affect virus fitness. In this study, we investigated the effect of single NA substitutions on the fitness of influenza B/Yamanashi/166/1998 viruses (Yamagata lineage). We generated recombinant viruses containing either wild-type (WT) NA or NA with a substitution in the catalytic (R371K) or framework (E119A, D198E, D198Y, I222T, H274Y, and N294S) residues. We assessed NAI susceptibility, NA biochemical properties, NA protein expression, and virus replication in vitro and in differentiated normal human bronchial epithelial (NHBE) cells. Our results showed that four NA substitutions (D198E, I222T, H274Y, and N294S) conferred reduced inhibition by oseltamivir and three (E119A, D198Y, and R371K) conferred highly reduced inhibition by oseltamivir, zanamivir, and peramivir. All NA substitutions, except for D198Y and R371K, were genetically stable after seven passages in MDCK cells. Cell surface NA protein expression was significantly increased by H274Y and N294S substitutions. Viruses with the E119A, I222T, H274Y, or N294S substitution were not attenuated in replication efficiency in vitro or in NHBE cells. Overall, viruses with the E119A or H274Y NA substitution possess fitness comparable to NAI-susceptible virus, and the acquisition of these substitutions by influenza B viruses should be closely monitored.


PLOS ONE | 2013

Determination of Neuraminidase Kinetic Constants Using Whole Influenza Virus Preparations and Correction for Spectroscopic Interference by a Fluorogenic Substrate

Bindumadhav M. Marathe; Vincent Leveque; Klaus Klumpp; Robert James Webster; Elena A. Govorkova

The influenza neuraminidase (NA) enzyme cleaves terminal sialic acid residues from cellular receptors, a process required for the release of newly synthesized virions. A balance of NA activity with sialic acid binding affinity of hemagglutinin (HA) is important for optimal virus replication. NA sequence evolution through genetic shift and drift contributes to the continuous modulation of influenza virus fitness and pathogenicity. A simple and reliable method for the determination of kinetic parameters of NA activity could add significant value to global influenza surveillance and provide parameters for the projection of fitness and pathogenicity of emerging virus variants. The use of fluorogenic substrate 2′-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) and cell- or egg-grown whole influenza virus preparations have been attractive components of NA enzyme activity investigations. We describe important criteria to be addressed when determining Km and Vmax kinetic parameters using this method: (1) determination of the dynamic range of MUNANA and 4-methylumbelliferone product (4-MU) fluorescence for the instrument used; (2) adjustment of reaction conditions to approximate initial rate conditions, i.e. ≤15% of substrate converted during the reaction, with signal-to-noise ratio ≥10; (3) correction for optical interference and inner filter effect caused by increasing concentrations of MUNANA substrate. The results indicate a significant interference of MUNANA with 4-MU fluorescence determination. The criteria proposed enable an improved rapid estimation of NA kinetic parameters and facilitate comparison of data between laboratories.


Journal of Virology | 2015

Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses

Min-Suk Song; Bindumadhav M. Marathe; Gyanendra Kumar; Sook-San Wong; Adam Rubrum; Mark Zanin; Young Ki Choi; Robert G. Webster; Elena A. Govorkova; Richard J. Webby

ABSTRACT Human infections with avian influenza viruses are a serious public health concern. The neuraminidase (NA) inhibitors (NAIs) are the frontline anti-influenza drugs and are the major option for treatment of newly emerging influenza. Therefore, it is essential to identify the molecular markers of NAI resistance among specific NA subtypes of avian influenza viruses to help guide clinical management. NAI-resistant substitutions in NA subtypes other than N1 and N2 have been poorly studied. Here, we identified NA amino acid substitutions associated with NAI resistance among influenza viruses of N3, N7, and N9 subtypes which have been associated with zoonotic transmission. We applied random mutagenesis and generated recombinant influenza viruses carrying single or double NA substitution(s) with seven internal genes from A/Puerto Rico/8/1934 (H1N1) virus. In a fluorescence-based NA inhibition assay, we identified three categories of NA substitutions associated with reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir): (i) novel subtype-specific substitutions in or near the enzyme catalytic site (R152W, A246T, and D293N, N2 numbering), (ii) subtype-independent substitutions (E119G/V and/or D and R292K), and (iii) substitutions previously reported in other subtypes (Q136K, I222M, and E276D). Our data show that although some markers of resistance are present across NA subtypes, other subtype-specific markers can only be determined empirically. IMPORTANCE The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). Since most studies have focused on NAI-resistance in human influenza viruses, we investigated the molecular changes in NA that could confer NAI resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7, and N9 subtypes, which have caused human infections. We identified not only numerous NAI-resistant substitutions previously reported in other NA subtypes but also several novel changes conferring reduced susceptibility to NAIs, which are subtype specific. The findings indicate that some resistance markers are common across NA subtypes, but other markers need to be determined empirically for each subtype. The study also implies that antiviral surveillance monitoring could play a critical role in the clinical management of influenza virus infection and an essential component of pandemic preparedness.

Collaboration


Dive into the Bindumadhav M. Marathe's collaboration.

Top Co-Authors

Avatar

Elena A. Govorkova

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Richard J. Webby

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert G. Webster

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jeremy C. Jones

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Vogel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Tatiana Baranovich

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Burnham

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Philippe Noriel Q. Pascua

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Scott Krauss

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Charles J. Russell

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge