Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bing Chun Yan is active.

Publication


Featured researches published by Bing Chun Yan.


Brain Research | 2011

Increases of antioxidants are related to more delayed neuronal death in the hippocampal CA1 region of the young gerbil induced by transient cerebral ischemia

Bing Chun Yan; Joon Ha Park; Choong Hyun Lee; Ki-Yeon Yoo; Jung Hoon Choi; Young Joo Lee; Jun Hwi Cho; Yi-Young Baek; Young-Myeong Kim; Moo-Ho Won

In age-related studies, young animals are resistant to ischemic damage. In present study, we investigated the neuronal death of pyramidal neurons and compared changes in the immunoreactivities and levels of antioxidants, Cu/Zn-SOD (SOD1), Mn-SOD (SOD2), catalase (CAT) and glutathione peroxidase (Gpx), in the hippocampal CA1 region between adult and young gerbils after 5 min of transient cerebral ischemia. In the adult ischemia-group, only a few (12%) of CA1 pyramidal neurons survived 4 days after ischemia-reperfusion (I-R); however, in the 4 days after I-R the young group, most of CA1 pyramidal neurons survived. Seven days after I-R, many (about 39%) of CA1 pyramidal neurons survived, thereafter, the neuronal death in the CA1 pyramidal neurons was not significantly changed. The immunoreactivities of all the antioxidants were well detected in CA1 pyramidal neurons in the adult sham-groups; in the young sham-groups, they were distinctively low compared to those in the adult sham-group. Four days after I-R in the adult group, all the immunoreactivities in the pyramidal neurons were dramatically deceased. However, at this time after I-R in the young groups, they were dramatically increased in the pyramidal neurons. From 7 days after I-R, all the immunoreactivities in the pyramidal neurons in the young ischemia-groups were distinctively decreased. In addition, the levels of all the antioxidants in the CA1 region of the young sham-groups were lower than those in the adult sham-group. Four days after I-R in the adult groups, the levels of all the antioxidants were dramatically deceased; however, at this time in the young ischemia-groups, they were distinctively increased in the CA1 region. Seven days after I-R, all the antioxidants levels in the CA1 region were distinctively decreased. In brief, we conclude that the increased antioxidants levels were related to a less and much delayed neuronal death in the CA1 pyramidal neurons in the young group following I-R injury.


Fitoterapia | 2012

Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage

Ok Kyu Park; Jung Hoon Choi; Joon Ha Park; In Hye Kim; Bing Chun Yan; Ji Hyeon Ahn; Seung-Hae Kwon; Jae-Chul Lee; Young Sup Kim; Misook Kim; Il-Jun Kang; Jong-Dai Kim; Yun Lyul Lee; Moo-Ho Won

We observed neuroprotective effects of five major lipophilic diterpenes derived from Danshen (Radix Salvia miltiorrhiza) extract, such as cryptotanshinone (CTs), dihydrotanshinone I (DTsI), tanshinone I (TsI), tanshinone IIA (TsIIA) and tanshinone IIB (TsIIB), in the hippocampal CA1 region (CA1) against transient ischemic damage in gerbils. These diterpenes were administered 30min before ischemia-reperfusion and the animals were sacrificed 4days after ischemia-reperfusion. In the vehicle-treated-group, cresyl violet positive (CV(+)) cells and neuronal nuclei (NeuN)(+) neurons were significantly decreased in the CA1. However, in the TsI- and CTs-treated-ischemia-groups, CV(+) and NeuN(+) neurons were abundant in the CA1. In the other groups, the number of CV(+) and NeuN(+) neurons was less than the TsI- and CTs-treated-ischemia-groups. In addition, gliosis induced by ischemic damage was apparently blocked in the TsI- and CTs-treated-ischemia-groups. These results suggest that TsI and CTs among five major lipophilic diterpenes have strong potentials for neuroprotection against ischemic damage.


Journal of the Neurological Sciences | 2014

Ischemic preconditioning-induced neuroprotection against transient cerebral ischemic damage via attenuating ubiquitin aggregation

Jae-Chul Lee; In Hye Kim; G. Cho; Joon Ha Park; Ji Hyeon Ahn; Bing Chun Yan; Hyuk Min Kwon; Young-Myeong Kim; Seung Hwan Cheon; Jun Hwi Cho; Hui Young Lee; Moo-Ho Won; Jeong Yeol Seo

Ubiquitin binds to short-lived proteins, and denatured proteins are produced by various forms of injuries. In the present study, we investigated the effect of ischemic preconditioning (IPC) on free ubiquitin and its mutant form (ubiquitin(+1)) in the gerbil hippocampus induced by transient cerebral ischemia. The animals were randomly assigned to 4 groups (sham-operated-group, ischemia-operated-group, IPC plus (+)-sham-operated-group, and IPC+ischemia-operated-group). IPC was induced by subjecting gerbils to a 2 min of ischemia followed by 1 day of recovery. A significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia-operated-groups 5 days after ischemia-reperfusion (I-R). In all the IPC+ischemia-operated-groups, neurons in the SP were well protected. We found that strong ubiquitin immunoreactivity was detected in the SP in the sham-operated-group and the immunoreactivity was decreased with time after I-R. In all the IPC+ischemia-operated-groups, ubiquitin immunoreactivity in the SP was similar to that in the sham-operated group. Moderate ubiquitin(+1) immunoreactivity was detected in the SP of the sham-operated-group, and the immunoreactivity was markedly increased 2 days after I-R. Five days after I-R, ubiquitin(+1) immunoreactivity was very weak in the SP. In all the IPC+ischemia-operated-groups, ubiquitin(+1) immunoreactivity in the SP was slightly decreased with time after I-R. Western blot analysis showed that, in all the IPC+ischemia-ischemia-groups, the levels of ubiquitin and ubiquitin(+1) proteins were well maintained after I-R. In brief, our findings suggest that the inhibition of the depletion of free ubiquitin and the formation of ubiquitin(+1) may have an essential role in inducing cerebral ischemic tolerance by IPC.


PLOS ONE | 2013

Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke.

Bing Chun Yan; Joon Ha Park; Bich Na Shin; Ji Hyeon Ahn; In Hye Kim; Jae-Chul Lee; Ki-Yeon Yoo; In Koo Hwang; Jung Hoon Choi; Jeong Ho Park; Yun Lyul Lee; Hong-Won Suh; Jong-Gab Jun; Young-Guen Kwon; Young-Myeong Kim; Seung-Hae Kwon; Song Her; Jin Su Kim; Byung-Hwa Hyun; Chul-Kyu Kim; Jun Hwi Cho; Choong Hyun Lee; Moo-Ho Won

Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.


Anatomy & Cell Biology | 2013

Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia

Jae-Chul Lee; Joon Ha Park; Ok Kyu Park; In Hye Kim; Bing Chun Yan; Ji Hyeon Ahn; Seung-Hae Kwon; Jung Hoon Choi; Jong-Dai Kim; Moo-Ho Won

Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications.


Journal of the Neurological Sciences | 2014

Changes and expressions of Redd1 in neurons and glial cells in the gerbil hippocampus proper following transient global cerebral ischemia.

Choong Hyun Lee; Joon Ha Park; Jeong-Hwi Cho; Ji Hyeon Ahn; Bing Chun Yan; Jae-Chul Lee; Myoung Cheol Shin; Seung Hwan Cheon; Young Shin Cho; Jun Hwi Cho; Young-Guen Kwon; Dong-Keon Lee; Young-Myeong Kim; Moo-Ho Won

Redd1 (known as RTP801/Dig2/DDIT4) is a stress-induced protein, and it is known to be regulated in response to some stresses including hypoxia and oxidative stress. In the present study, we investigated the time-dependent changes in Redd1 immunoreactivity and its protein levels in the gerbil hippocampus proper (CA1-3 regions) after 5 min of transient global cerebral ischemia using immunohistochemistry and Western blot analysis. Redd1 immunoreactivity was apparently changed in the pyramidal neurons of the ischemic CA1 region, not in the pyramidal neurons of the ischemic CA2/3 region. Redd1 immunoreactivity in the CA1 pyramidal neurons was significantly increased at 6 h post-ischemia, decreased until 1 day post-ischemia, increased again at 2 days post-ischemia and weakly observed at 5 days post-ischemia. Especially, at 5 days after ischemic damage, Redd1 immunoreactivity was newly expressed in astrocytes and GABAergic interneurons in the CA1 region. Redd1 protein levels in the ischemic CA1 region were changed like the pattern of the Redd1 immunoreactivity. These results indicate that Redd1 immunoreactivity and protein levels are increased in the ischemic CA1 region at an early time after ischemic damage and that the increased Redd1 expression may be closely related to the delayed neuronal death of the CA1 pyramidal neurons following 5 min of transient global cerebral ischemia.


Brain Research | 2013

Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils

Jae-Chul Lee; Ji Hyeon Ahn; Dae Hwan Lee; Bing Chun Yan; Joon Ha Park; In Hye Kim; G. Cho; Young-Myeong Kim; Bonghee Lee; Chan Woo Park; Jun Hwi Cho; Hui Young Lee; Moo-Ho Won

Although many studies regarding ischemic brain damage in the gerbil have been reported, studies on neuronal damage according to various durations of ischemia-reperfusion (I-R) have been limited. In this study, we examined neuronal damage/death and glial changes in the somatosensory cortex 4 days after 5, 10 and 15 min of transient cerebral ischemia using the gerbil. To examine neuronal damage, we used Fluoro-Jade B (F-J B, a marker for neuronal degeneration) histofluorescence staining as well as cresyl violet (CV) staining and neuronal nuclei (NeuN, neuronal marker) immunohistochemistry. In the somatosensory cortex, some CV and NeuN positive (+) neurons were slightly decreased only in layers III and VI in the 5 min ischemia-group, and the number of CV+ and NeuN+ neurons were decreased with longer ischemic time. The F-J B histofluorescence staining showed a clear neuronal damage in layers III and VI, and the number of F-J B+ neurons was increased with time of ischemia-reperfusion: in the 15 min ischemia-group, the number of F-J B+ neurons was much higher in layer III than in layer VI. In addition, we immunohistochemically examined gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti-ionized calcium-binding adapter molecule 1 (Iba-1) antibody, respectively. In the 5 min ischemia-group, GFAP+ astrocytes and Iba-1+ microglia were distinctively increased in number, and their immunoreactivity was stronger than that in the sham-group. In the 10 and 15 min ischemia-groups, numbers of GFAP+ and Iba-1+ glial cells were much more increased with time of ischemia-reperfusion; in the 15 min ischemia-group, their distribution patterns of GFAP+ and Iba-1+ glial cells were similar to those in the 10 min ischemia-group. Our fining indicates that neuronal death/damage and gliosis of astrocytes and microglia were apparently increased with longer time of ischemia-reperfusion.


Journal of the Neurological Sciences | 2012

Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration

Gu Hyun Kang; Bing Chun Yan; Geum Sil Cho; Won Ki Kim; Choong Hyun Lee; Jun Hwi Cho; Missok Kim; Il Jun Kang; Moo-Ho Won; Jae Chul Lee

In our previous study, we reported that lipopolysaccharide (LPS) activated microglia and accelerated cerebral ischemic injury in the rat brain through the overexpression of cytokines in microglia. In the present study, we investigated the effect of the intraperitoneal administration of fucoidin, a potent inhibitor of leukocyte rolling and anti-inflammatory agent, against accelerated cerebral ischemic injury by LPS pretreatment using rats. We found that fucoidin treatment inhibited the expressions of some brain cytokine or chemokine mRNA such as IL-8, TNF-α and iNOS in the brain of the rats treated only with LPS. We also observed that fucoidin treatment dramatically decreased the infarct size in accelerated cerebral ischemic injury induced by LPS treatment at an early time after ischemic injury. In addition, the immunoreactivity of myleoperoxidase (MPO), a marker for quantifying neutrophil accumulation, was distinctively decreased in the ischemic brain of the fucoidin-treated rat. In brief, our results indicate that fucoidin showed a neuroprotective effect on LPS accelerated cerebral ischemic injury through inhibiting the expression of some cytokine/chemokine and neutrophil recruitments.


Brain Research | 2012

Comparison of inflammatory cytokines changes in the hippocampal CA1 region between the young and adult gerbil after transient cerebral ischemia

Bing Chun Yan; Sung Koo Kim; Joon Ha Park; Ji Hyeon Ahn; Choong Hyun Lee; Ki-Yeon Yoo; Jung Hoon Choi; Deuk-Sik Lee; Myong Jo Kim; Young-Myeong Kim; Moo-Ho Won

Young animals appear much less vulnerable to ischemic insults. In present study, we compared neuronal damage and changes in the immunoreactivities and levels of inflammatory cytokine, interleukin (IL-) 2 as a pro-inflammatory cytokine and its receptor (IL-2Rβ), IL-4 and IL-13 as anti-inflammatory cytokines, in the hippocampal CA1 region between adult and young gerbils after 5 min of transient cerebral ischemia. Most (about 89%) of hippocampal CA1 pyramidal neurons showed neuronal damage only in the adult gerbil at 4 days post-ischemia; in the young ischemia-group, about 61% of CA1 pyramidal neurons showed neuronal damage at 7 days post-ischemia. Thereafter, the neuronal damage in the CA1 pyramidal neurons was not significantly changed in both the groups. IL-2 and IL-2Rβ immunoreactivity in the stratum pyramidale (SP) of the CA1 region was similar in both the sham groups. At 4 days post-ischemia, IL-2 and IL-2Rβ immunoreactivity in the adult SP was dramatically decreased; however, in the young SP, they were not changed, and they were decreased at 7 days post-ischemia. IL-4 and IL-13 immunoreactivity in the SP of the young sham-group were much lower than those in the adult group. Four days after ischemia-reperfusion, they were dramatically decreased in the adult ischemia-group; however, at this time, they were markedly increased in the young ischemia-group. In brief, our findings indicate that IL-2, 2Rβ, IL-4 and IL-13 immunoreactivity in young gerbils was similar or low compared to those in the adult, and they were decreased at 4 days post-ischemia in the adult; however, at this time, they were distinctively increased in the young.


Journal of the Neurological Sciences | 2013

Postsynaptic density protein (PSD)-95 expression is markedly decreased in the hippocampal CA1 region after experimental ischemia-reperfusion injury.

Bing Chun Yan; Joon Ha Park; Ji Hyeon Ahn; Jae-Chul Lee; Moo-Ho Won; Il-Jun Kang

Synaptic plasticity is important for functional recovery after cerebral ischemic injury. In the present study, we investigated chronological change in the immunoreactivity of PSD-95, a kind of postsynaptic density protein, in the hippocampus proper (CA1-3 regions) after 5 min of transient cerebral ischemia in gerbils. PSD-95 immunoreactivity was observed in MAP-2-immunoreactive dendrites in the CA1-3 regions of the sham group. The PSD-95 immunoreactivity was shown as beaded structure in the MAP-2-immunoreactive dendrites. However, PSD-95 immunoreactivity began to be dramatically decreased in MAP-2-immunoreactive dendrites in the CA1 region, not CA2-3 region, at early time after ischemia-reperfusion. At 5 days after ischemia-reperfusion, MAP-2 immunoreactivity almost disappeared in the ischemic CA1 region, and PSD-95 immunoreactivity was much lower than that in the sham group. In brief, PSD-95 immunoreactivity in the CA1 dendrites was markedly decreased at early time after ischemia-reperfusion. We suggest that decreased PSD-95 immunoreactivity in the ischemic CA1 region may lead to a deficit of postsynaptic plasticity in the brain.

Collaboration


Dive into the Bing Chun Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Chul Lee

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

In Hye Kim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Jun Hwi Cho

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

In Koo Hwang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jung Hoon Choi

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Young-Myeong Kim

Kangwon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge