Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bing Ji is active.

Publication


Featured researches published by Bing Ji.


Oncotarget | 2016

Gli1 promotes colorectal cancer metastasis in a Foxm1-dependent manner by activating EMT and PI3K-AKT signaling

Chuan Zhang; Yong Wang; Yifei Feng; Yue Zhang; Bing Ji; Sen Wang; Ye Sun; Chunyan Zhu; Dongsheng Zhang; Yueming Sun

Colorectal cancer(CRC) is one of the most commonly diagnosed cancers in human beings and metastasis is the main death reason. Recently, Gli1 has been reported to be a key regulator of various cancer biologies and genes expressions. However, the detailed molecular mechanism of Gli1 in CRC metastasis remains largely unknown. In this study, we aimed to investigate the role of Gli1 in CRC metastasis. We used qRT-PCR, Immunohistochemistry and Western blot to test the expression levels of Gli1, Foxm1 and other target genes in the tissues and cells; Lentivirus stable transfection to change the expression levels of Gli1 and Foxm1; Wound-healing, cell invasion, migration assays and tail vein metastatic assay to test the role of Gli1 in CRC metastasis in vitro and vivo. We demonstrated that Gli1 was significantly overexpressed in colorectal cancer tissues and cells. Foxm1 level had a positive correlation with Gli1. Furthermore, we found that Gli1 promotes colorectal cancer cells metastasis in a Foxm1-dependent manner by activating EMT and PI3K-AKT signaling. Thus, we proved that Gli1 plays important role in CRC metastasis and provided a new visual field on the therapy of CRC metastasis.


Oncology Reports | 2017

TRIM59 facilitates the proliferation of colorectal cancer and promotes metastasis via the PI3K/AKT pathway

Ye Sun; Bing Ji; Yifei Feng; Yue Zhang; Dongjian Ji; Chunyan Zhu; Sen Wang; Chuan Zhang; Dongsheng Zhang; Yueming Sun

Tripartite motif-containing 59 (TRIM59) belongs to the tripartite motif (TRIM) protein family and is upregulated in various malignancies. However, its expression in colorectal cancer (CRC) is still unknown. In the present study, we examined the expression and biological function of TRIM59 in CRC. We analyzed CRC tissues and cells by quantitative real-time polymerase chain reaction. Kaplan-Meier survival analysis was used to evaluate the prognostic significance of TRIM59 in CRC patients. Furthermore, we investigated the role of TRIM59 in CRC growth and metastasis. The potential mechanism underlying the regulation of cell metastasis by TRIM59 was determined by western blotting. TRIM59 expression was conspicuously overexpressed in CRC tissues and CRC cell lines compared to that noted in the corresponding normal control cells. Patients with higher TRIM59 expression had poorer prognosis. Furthermore, knockdown of TRIM59 suppressed cell proliferation through the induction of apoptosis and inhibited migration and invasion significantly in vitro. Further investigation revealed that knockdown of TRIM59 effectively reversed the expression of epithelial-mesenchymal transformation-related proteins vimentin, Snail and E-cadherin. Our preliminary results confirm that TRIM59 can be mediated by PI3K/AKT signaling. TRIM59 functions as an oncogene in CRC progression, which could be a novel target for the detection and treatment of CRC.


OncoTargets and Therapy | 2018

Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer

Sen Wang; Zhiyuan Zhang; Wenwei Qian; Dongjian Ji; Qingyuan Wang; Bing Ji; Yue Zhang; Chuan Zhang; Ye Sun; Chunyan Zhu; Yueming Sun

Introduction Vasculogenic mimicry (VM) describes the formation of an epithelial-independent tumor microcirculation system that differs from traditional angiogenesis. Angiogenesis and the formation of VM are closely related through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and the epithelial–mesenchymal transition (EMT) process. Materials and methods In this study, 8-Br-cAMP, a cAMP analog and PKA activator, was used to activate the cAMP/PKA pathway to evaluate the effects of cAMP/PKA on angiogenesis and VM in colorectal cancer (CRC) cells. We used a syngeneic model of CRC in BALB/c mice. Results We discovered that treatment with 8-Br-cAMP significantly reduced tumor number compared to control mice after the 7th, 14th, and 28th days of treatment. VM was evaluated by periodic acid–schiff (PAS)–CD31 staining, and we found that VM was inhibited by 8-Br-cAMP treatment in vivo. Immunohistochemistry confirmed the inhibition of vascular endothelial growth factor (VEGF) and cAMP and the activation of PKA by 8-Br-cAMP; quantitative real-time-PCR (qRT-PCR) demonstrated that 8-Br-cAMP regulated the expression of vascular endothelial (VE)-cadherin, matrix metalloproteinase 2 (MMP2), ephrin type-A receptor 2 (EphA2), and VEGF in vivo. Experiments in vitro revealed that treatment with 8-Br-cAMP and U0126 decreased VEGF expression through PKA–ERK in CT26 cells by qRT-PCR. We further confirmed that tube formation of human umbilical vein endothelial cells was inhibited by 8-Br-cAMP in vitro. Discussion This study demonstrates that angiogenesis and VM are inhibited by 8-Br-cAMP treatment. Our data indicate that 8-Br-cAMP acts through the cAMP/PKA–ERK pathway and through EMT processes in CRC. These findings provide an insight into mechanisms of CRC and suggest that the cAMP/PKA–ERK pathway is a novel potential therapeutic target for the treatment of CRC.


International Journal of Oncology | 2018

TRIM27 functions as an oncogene by activating epithelial-mesenchymal transition and p-AKT in colorectal cancer

Yue Zhang; Yifei Feng; Dongjian Ji; Qingyuan Wang; Wenwei Qian; Shijia Wang; Zhiyuan Zhang; Bing Ji; Chuan Zhang; Yueming Sun; Zan Fu

Tripartite motif-containing 27 (TRIM27) belongs to the tripartite motif (TRIM) protein family and is involved in various malignant tumor processes. However, the function and mechanism of TRIM27 in colorectal cancer (CRC) remains to be elucidated. In the present study, the expression of TRIM27 was analyzed in CRC tissues and adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. LoVo and HCT116 cell lines were then selected to further investigate the function of TRIM27 in the proliferation, invasion and metastasis of CRC in vitro and in vivo. Finally, the potential mechanism underlying the effects of TRIM27 in CRC was examined by western blotting. The results showed that TRIM27 was upregulated in CRC tissues, and the expression level of TRIM27 was significantly associated with tumor invasion, metastasis and prognosis. Following TRIM27 inhibition and overexpression in CRC cells, it was found that TRIM27 promoted cell proliferation, possibly via the inhibition of apoptosis and cell cycle regulation. TRIM27 also facilitated invasion and metastasis. Finally, it was observed that TRIM27 promoted epithelial-mesenchymal transition and activated phosphorylated AKT serine/threonine kinase in CRC cells. These results suggested that TRIM27 is an oncogenic protein in the progression of CRC, and may represent a novel target for CRC detection and therapy.


Cancer Medicine | 2017

Transcriptome analysis in primary colorectal cancer tissues from patients with and without liver metastases using next-generation sequencing

Sen Wang; Chuan Zhang; Zhiyuan Zhang; Wenwei Qian; Ye Sun; Bing Ji; Yue Zhang; Chunyan Zhu; Dongjian Ji; Qingyuan Wang; Yueming Sun

Colorectal cancer (CRC) is the third most common cancer worldwide and liver metastases are the leading cause of death in patients with CRC. In this study, we performed next‐generation sequencing profiling on primary colorectal tumor tissues obtained from three CRC patients with liver metastases and three CRC patients without liver metastases to identify differentially expressed genes (DEGs) that might be responsible for the metastases process. After filtering 2690 DEGs, comprising 996 upregulated and 1694 downregulated RNAs, 22 upregulated and 73 downregulated DEGs were identified. Gene ontology (GO) and pathway analyses were performed to determine the underlying mechanisms. Single‐organism process (biological process), cell (cellular component), and binding (molecular function) were the most related terms in the GO analysis. We selected the top 13 upregulated and top 12 downregulated genes by fold change to verify their differential expression using quantitative real‐time reverse transcription PCR (qRT‐PCR) and immunohistochemistry (IHC). The validation showed that three most significantly upregulated DEGs were HOXD10, UGT2A3, and SLC13A2, whereas the five most significantly downregulated DEGs were SPP1, CXCL8, MMP3, OSM, and CXCL6, respectively. These aberrantly expressed genes may play pivotal roles in promoting or inhibiting metastases. Further studies are required to determine the functions of DEGs to promote the diagnosis of metastases and provide novel chemotherapy targets.


Oncology Reports | 2018

GPR56 promotes proliferation of colorectal cancer cells and enhances metastasis via epithelial‑mesenchymal transition through PI3K/AKT signaling activation

Bing Ji; Yifei Feng; Ye Sun; Dongjian Ji; Wenwei Qian; Zhiyuan Zhang; Qingyuan Wang; Yue Zhang; Chuan Zhang; Yueming Sun

G protein-coupled receptor 56 (GPR56), a member of the orphan GPCR family, has been reported to be an oncogene in various malignancies. However, little is known regarding the detailed molecular mechanism of GPR56 in colorectal cancer (CRC). The present study aimed to detect the expression level and biological function of GPR56 in CRC. We examined the expression of GPR56 in CRC tissues and cell lines by quantitative real time (qRT)-PCR, immunohistochemistry, and western blot analysis. The prognostic significance of GPR56 in CRC patients was evaluated by Kaplan-Meier survival analysis. The influence of GPR56 on tumor cell proliferation (via Cell Counting Kit-8, and a tumor formation assay in mice), apoptosis (flow cytometry), cell cycle distribution (flow cytometry) and migration (Transwell assay) was explored. We also investigated the underlying mechanism of GPR56 by western blot analysis. We found GPR56 expression was significantly upregulated in CRC tissues and cell lines compared to corresponding normal controls. Higher GPR56 expression in patients predicted poorer prognosis. Depletion of GPR56 markedly suppressed cell proliferation, migration, and invasion. GPR56 overexpression promoted CRC cell metastasis by expediting epithelial-mesenchymal transition by activating PI3K/AKT signaling. In conclusion, GPR56 played an important role in CRC progression and may represent a new therapeutic target to reduce CRC metastasis.


Oncology Reports | 2018

Construction of a ceRNA network reveals potential lncRNA biomarkers in rectal adenocarcinoma

Zhiyuan Zhang; Sen Wang; Dongjian Ji; Wenwei Qian; Qingyuan Wang; Jie Li; Jiou Gu; Wen Peng; Tao Hu; Bing Ji; Yue Zhang; Shijia Wang; Yueming Sun

Competing endogenous RNAs (ceRNAs) render the functions of long non-coding RNAs (lncRNAs) more complicated during cancer processes. Potential lncRNA biomarkers and their roles as ceRNAs have not been clearly described for rectal adenocarcinoma (READ). In the present study, we extracted data from The Cancer Genome Atlas (TCGA) including data from 167 tumor samples and 10 adjacent non-tumor samples. A total of 202 lncRNAs, 190 microRNAs (miRNAs) and 1,530 mRNAs were identified as READ-specific RNAs [log2(fold-change)>2, FDR<0.01]. The Gene Ontology (GO) biological processes and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analysed for 1,530 specific mRNAs. Among 202 READ-specific lncRNAs, 7 lncRNAs were identified as being associated with overall survival of READ patients. Then, a ceRNA network was constructed with 34 key lncRNAs, 25 miRNAs and 65 mRNAs. A total of 7 lncRNAs from the network were revealed to be linked to clinical features. The results of qRT-PCR ascertained that our analysis was credible. Overall, this research provides a novel perspective from which to study the lncRNA-related ceRNA network in READ and assists in the identification of new potential biomarkers to be used for diagnostic and prognostic purposes.


International Journal of Oncology | 2018

CDCA3 mediates p21-dependent proliferation by regulating E2F1 expression in colorectal cancer

Wenwei Qian; Zhiyuan Zhang; Wen Peng; Jie Li; Qiou Gu; Dongjian Ji; Qingyuan Wang; Yue Zhang; Bing Ji; Sen Wang; Dongsheng Zhang; Yueming Sun

Dysregulated cell cycle progression serves a crucial role in tumor development. Cell division cycle- associated 3 (CDCA3) is considered a trigger of mitotic entry; it is an important part of the S phase kinase-associated protein 1/Cullin/F-box ubiquitin ligase complex and mediates the destruction of mitosis-inhibitory kinase wee1. However, little is known about the role of CDCA3 in cancer, particularly colorectal cancer (CRC). The present study aimed to explore the biological and clinical significance of CDCA3 in CRC growth and progression. CDCA3 expression was significantly associated with tumor progression and poor survival. Overexpression of CDCA3 increased proliferation in LoVo CRC cells, whereas CDCA3 knockdown in SW480 CRC cells led to decreased proliferation, in vitro and in vivo. Further mechanistic investigations demonstrated that reduced CDCA3 expression resulted in G1/S phase transition arrest, which was attributed to a significant accumulation of p21 in SW480 cells; conversely, increased CDCA3 expression promoted G1/S phase transition through decreased p21 accumulation in LoVo cells. It was also demonstrated that CDCA3 was able to regulate the expression of transcription factor E2F1, thereby repressing p21 expression. Taken together, these results suggested that overexpression of CDCA3 may serve a crucial role in tumor malignant potential and that CDCA3 may be used as a prognostic factor and a potential therapeutic target in CRC.


Cellular Physiology and Biochemistry | 2018

Analysis of lncRNA-Associated ceRNA Network Reveals Potential lncRNA Biomarkers in Human Colon Adenocarcinoma

Zhiyuan Zhang; Wenwei Qian; Sen Wang; Dongjian Ji; Qingyuan Wang; Jie Li; Wen Peng; Jiou Gu; Tao Hu; Bing Ji; Yue Zhang; Shijia Wang; Yueming Sun

Background/Aims: Long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) play significant roles in the development of tumors, but the functions of specific lncRNAs and lncRNA-related ceRNA networks have not been fully elucidated for colon adenocarcinoma (COAD). In this study, we aimed to clarify the lncRNA-microRNA (miRNA)-mRNA ceRNA network and potential lncRNA biomarkers in COAD. Methods: We extracted data from The Cancer Genome Atlas (TCGA) and identified COAD-specific mRNAs, miRNAs, and lncRNAs. The biological processes in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed for COAD-specific mRNAs. We then constructed a ceRNA network of COAD-specific mRNAs, miRNAs and lncRNAs and analyzed the correlation between expression patterns and clinical features of the lncRNAs involved. After identifying potential mRNA targets of 4 lncRNAs related to overall survival (OS), we conducted stepwise analysis of these targets through GO and KEGG. Using tissue samples from our own patients, we also verified certain analytical results using quantitative real-time PCR (qRT-PCR). Results: Data from 521 samples (480 tumor tissue and 41 adjacent non-tumor tissue samples) were extracted from TCGA. A total of 258 specific lncRNAs, 206 specific miRNAs, and 1467 specific mRNAs were identified (absolute log2 [fold change] > 2, false discovery rate < 0.01). Analysis of KEGG revealed that specific mRNAs were enriched in cancer-related pathways. The ceRNA network was constructed with 64 lncRNAs, 18 miRNAs, and 42 mRNAs. Among these lncRNAs involved in the network, 3 lncRNAs (LINC00355, HULC, and IGF2-AS) were confirmed to be associated with certain clinical features and 4 lncRNAs (HOTAIR, LINC00355, KCNQ1OT1, and TSSC1-IT1) were found to be negatively linked to OS (log-rank p < 0.05). KEGG showed that the potential mRNA targets of these 4 lncRNAs may be concentrated in the MAPK pathway. Certain results were validated by qRT-PCR. Conclusion: This study providing novel insights into the lncRNA-miRNA-mRNA ceRNA network and reveals potential lncRNA biomarkers in COAD.


Cell Proliferation | 2018

Upregulated miR-1258 regulates cell cycle and inhibits cell proliferation by directly targeting E2F8 in CRC

Zhiyuan Zhang; Jie Li; Yuanjian Huang; Wen Peng; Wenwei Qian; Jiou Gu; Qingyuan Wang; Tao Hu; Dongjian Ji; Bing Ji; Yue Zhang; Shijia Wang; Yueming Sun

MicroRNAs (miRNAs) as small noncoding RNA molecules function by regulating their target genes negatively. MiR‐1258 was widely researched in multicancers, but its role remains unclear in colorectal cancer (CRC).

Collaboration


Dive into the Bing Ji's collaboration.

Top Co-Authors

Avatar

Yue Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yueming Sun

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Dongjian Ji

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Qingyuan Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Wenwei Qian

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhiyuan Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Sen Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chuan Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Shijia Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Chunyan Zhu

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge