Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bing Lang is active.

Publication


Featured researches published by Bing Lang.


The Journal of Neuroscience | 2008

Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1.

Sanbing Shen; Bing Lang; Chizu Nakamoto; Feng Zhang; Jin Pu; Soh-Leh Kuan; Christina Chatzi; S. He; Iain Mackie; Nicholas J. Brandon; Karen L. Marquis; Mark Day; Orest Hurko; Colin D. McCaig; Gernot Riedel; David St Clair

Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1tr transgenic mice expressing 2 copies of truncated Disc1 encoding the first 8 exons using a bacterial artificial chromosome (BAC). With this partial simulation of the human situation, we have discovered a range of phenotypes including a series of novel features not previously reported. Disc1tr transgenic mice display enlarged lateral ventricles, reduced cerebral cortex, partial agenesis of the corpus callosum, and thinning of layers II/III with reduced neural proliferation at midneurogenesis. Parvalbumin GABAergic neurons are reduced in the hippocampus and medial prefrontal cortex, and displaced in the dorsolateral frontal cortex. In culture, transgenic neurons grow fewer and shorter neurites. Behaviorally, transgenic mice exhibit increased immobility and reduced vocalization in depression-related tests, and impairment in conditioning of latent inhibition. These abnormalities in Disc1tr transgenic mice are consistent with findings in severe schizophrenia.


Journal of Clinical Investigation | 2006

Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice.

Bing Lang; Bing Song; Wendy Davidson; Alastair MacKenzie; Norman Smith; Colin D. McCaig; Anthony J. Harmar; Sanbing Shen

Hydrocephalus is a common and potentially devastating birth defect affecting the CNS, and its relationship with G protein-coupled receptors (GPCRs) is unknown. We have expressed 2, 4, or 6 copies of a GPCR--the human PAC1 receptor with a 130-kb transgene in the mouse nervous system in a pattern closely resembling that of the endogenous gene. Consistent with PAC1 actions, PKA and PKC activity were elevated in the brains of Tg mice. Remarkably, Tg mice developed dose-dependent hydrocephalus-like characteristics, including enlarged third and lateral ventricles and reduced cerebral cortex, corpus callosum, and subcommissural organ (SCO). Neuronal proliferation and apoptosis were implicated in hydrocephalus, and we observed significantly reduced neuronal proliferation and massively increased neuronal apoptosis in the developing cortex and SCO of Tg embryos, while neurite outgrowth and neuronal migration in vitro remain uncompromised. Ventricular ependymal cilia are crucial for directing cerebrospinal fluid flow, and ependyma of Tg mice exhibited disrupted cilia with increased phospho-CREB immunoreactivity. These data demonstrate that altered neuronal proliferation/apoptosis and disrupted ependymal cilia are the main factors contributing to hydrocephalus in PAC1-overexpressing mice. This is the first report to our knowledge demonstrating that misregulation of GPCRs can be involved in hydrocephalus-related neurodevelopmental disorders.


Experimental Neurology | 2009

Derivation of homogeneous GABAergic neurons from mouse embryonic stem cells

Christina Chatzi; Roderick H. Scott; Jin Pu; Bing Lang; Chizu Nakamoto; Colin D. McCaig; Sanbing Shen

Embryonic stem cells (ESCs) promise an unlimited source of defined cells for cell transplantation therapy, while protocols for derivation of homogeneous populations of desirable cell types are yet to be developed and/or refined. Gamma aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, and disturbed GABAergic signaling is associated with a host of neurological conditions. We developed a simple ES cell differentiation protocol which led to the production of uniform GABAergic neurons in approximately 2 weeks. The differentiation protocol involved treatment of embryoid bodies (EBs) with high concentrations (10(-5)-10(-)(4) M) of all-trans-retinoic acid (RA) for 3 days. After plating these EBs on attached dishes in neural supportive medium, 93-96% of the cells became GABA-positive neurons in 7-11 days. These cells also expressed immature neuronal markers with voltage-gated delayed rectifier potassium currents, suggesting that they were immature GABAergic neurons. The technology may have implications for modeling and treatment of GABAergic signaling-related diseases and injuries.


Journal of Cell Science | 2014

Recurrent deletions of ULK4 in schizophrenia: a gene crucial for neuritogenesis and neuronal motility

Bing Lang; Jin Pu; Irene Hunter; Min Liu; Christina Martin-Granados; Thomas J. Reilly; Guo-Dong Gao; Zhenlong Guan; Weidong Li; Yongyong Shi; Guang He; Lin He; Hreinn Stefansson; David St Clair; Douglas Blackwood; Colin D. McCaig; Sanbing Shen

ABSTRACT Although many pathogenic copy number variations (CNVs) are associated with neuropsychiatric diseases, few of them have been functionally characterised. Here we report multiple schizophrenia cases with CNV abnormalities specific to unc-51-like kinase 4 (ULK4), a serine/threonine kinase gene. Deletions spanning exons 21–34 of ULK4 were present in 4 out of 3391 schizophrenia patients from the International Schizophrenia Consortium, but absent in 3181 controls. Deletions removing exons 33 and 34 of the large splice variant of ULK4 also were enriched in Icelandic schizophrenia and bipolar patients compared with 98,022 controls (P = 0.0007 for schizophrenia plus bipolar disorder). Combining the two cohorts gives a P-value less than 0.0001 for schizophrenia, or for schizophrenia plus bipolar disorder. The expression of ULK4 is neuron-specific and developmentally regulated. ULK4 modulates multiple signalling pathways that include ERK, p38, PKC and JNK, which are involved in stress responses and implicated in schizophrenia. Knockdown of ULK4 disrupts the composition of microtubules and compromises neuritogenesis and cell motility. Targeted Ulk4 deletion causes corpus callosum agenesis in mice. Our findings indicate that ULK4 is a rare susceptibility gene for schizophrenia.


Stem Cell Research & Therapy | 2011

A zinc finger protein Zfp521 directs neural differentiation and beyond

Sanbing Shen; Jin Pu; Bing Lang; Colin D. McCaig

Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men.


Neuroscience | 2014

The expression and roles of Nde1 and Ndel1 in the adult mammalian central nervous system

Z. Pei; Bing Lang; Y.D. Fragoso; K.D. Shearer; Lei Zhao; P.J.A. Mccaffery; Sanbing Shen; Yu-Qiang Ding; Colin D. McCaig; J.M. Collinson

Graphical abstract Nde1 (red) is localised to the GFAP-positive (green) stem cell of the subventricular zone of the lateral ventricle, and its overexpression in neural stem cells promotes neuronal differentiation while inhibiting astroglial differentiation.


Neuropharmacology | 2010

GABAergic amacrine cells and visual function are reduced in PAC1 transgenic mice

Bing Lang; Lei Zhao; Li Cai; Lisa McKie; John V. Forrester; Colin D. McCaig; Ian J. Jackson; Sanbing Shen

Pituitary adenylate cyclase activating polypeptide (PACAP) and its high affinity receptor PAC1 are expressed in mammalian retina and involved in processing light information. However, their roles during retinogenesis remain largely elusive. Previously, we have generated transgenic mice overexpressing the human PAC1 receptor, and shown that PACAP signaling is essential for normal development of the central nervous system. In this study, we show for the first time that PACAP signaling plays an important role in the development of retina, particularly in the genesis of GABAergic amacrine cells. Overexpression of the PAC1 receptor leads to an early exit from retinal proliferation, reduced production of GABAergic neurons, and a marked decline in visual function. These data demonstrate that an appropriate level of PACAP signaling is required for normal retinogenesis and visual function. This finding may have implications in GABAergic neuron-related neurological conditions.


Cell Adhesion & Migration | 2016

The ciliary GTPase Arl13b regulates cell migration and cell cycle progression

Michal Pruski; Ann M. Rajnicek; Zhifu Yang; Hannah Clancy; Yu-Qiang Ding; Colin D. McCaig; Bing Lang

ABSTRACT The GTPase ARL13B is localized to primary cilia; small cellular protrusions that act as antennae. Its defective ARL13B hennin (HNN) variant is linked causally with Joubert Syndrome, a developmental ciliopathy attributed to poor sensing of extracellular chemical gradients. We tested the hypothesis that impaired detection of extracellular voltage gradients also contributes to the HNN phenotype. In vitro, extracellular electric fields stimulated migration of wild type (WT) and HNN fibroblasts toward the cathode but the field only increased the migration speed of WT cells. Cilia on WT cells did not align to the field vector. HNN cells divided more slowly than WT cells, arresting at the G2/M phase. Mechanistically, HNN cells had reduced phospho-ERK1/2 signaling and elevated levels of Suppressor of Fused protein. These suggest that cells may not be able to read extracellular chemical cues appropriately, resulting in deficits in cell migration and proliferation. Finally, an increase in tubulin stabilization (more detyrosinated tubulin) confirmed the general stagnation of HNN cells, which may further contribute to slower migration and cell cycle progression. We conclude that Arl13b dysfunction resulted in HNN cell stagnation due to poor growth factor signaling and impaired detection of extracellular electrical gradients, and that the role of Arl13b in cell proliferation may be understated.


Scientific Reports | 2015

Neurochemical characterization of pERK-expressing spinal neurons in histamine-induced itch

Guan-Yu Jiang; Meng-Han Dai; Kun Huang; Guo-Dong Chai; Jia-Yin Chen; Ling Chen; Bing Lang; Qing-Xiu Wang; David St Clair; Colin D. McCaig; Yu-Qiang Ding; Ling-ling Zhang

Acute itch is divided into histamine- and non-histamine-dependent subtypes, and our previous study has shown that activation of ERK signaling in the spinal dorsal horn (SDH) is required selectively for histamine-induced itch sensation. Morphological characteristics of pERK-expressing neurons are required for exploring the mechanism underlying spinal itch sensation. To investigate whether pERK-expressing neurons are supraspinally-projecting neurons, we injected Fluorogold (FG) into the ventrobasal thalamic complex (VB) and parabrachial region, the two major spinal ascending sites in rodents. A small number (1%) of pERK-positive neurons were labeled by FG, suggesting that histamine-induced activation of ERK is primarily located in local SDH neurons. We then examined the co-localization of pERK with Calbindin and Lmx1b, which are expressed by excitatory neurons, and found that more than half (58%) of pERK-positive neurons expressed Lmx1b, but no co-expression with Calbindin was observed. On the other hand, approximately 7% of pERK-positive neurons expressed GAD67, and 27% of them contained Pax2. These results support the idea that pERK-expressing neurons serve as a component of local neuronal circuits for processing itch sensation in the spinal cord.


Molecular Brain | 2016

Oxytocin is implicated in social memory deficits induced by early sensory deprivation in mice

Jin-Bao Zhang; Ling Chen; Zhu-Man Lv; Xue-Yuan Niu; Can-Can Shao; Chan Zhang; Michal Pruski; Ying Huang; Cong-Cong Qi; Ning-Ning Song; Bing Lang; Yu-Qiang Ding

Early-life sensory input plays a crucial role in brain development. Although deprivation of orofacial sensory input at perinatal stages disrupts the establishment of the barrel cortex and relevant callosal connections, its long-term effect on adult behavior remains elusive. In this study, we investigated the behavioral phenotypes in adult mice with unilateral transection of the infraorbital nerve (ION) at postnatal day 3 (P3). Although ION-transected mice had normal locomotor activity, motor coordination, olfaction, anxiety-like behaviors, novel object memory, preference for social novelty and sociability, they presented deficits in social memory and spatial memory compared with control mice. In addition, the social memory deficit was associated with reduced oxytocin (OXT) levels in the hypothalamus and could be partially restored by intranasal administration of OXT. Thus, early sensory deprivation does result in behavioral alterations in mice, some of which may be associated with the disruption of oxytocin signaling.

Collaboration


Dive into the Bing Lang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanbing Shen

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Jin Pu

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Can-Can Shao

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Chan Zhang

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge