Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bing Q. Huang is active.

Publication


Featured researches published by Bing Q. Huang.


Journal of The American Society of Nephrology | 2009

Characterization of PKD Protein-Positive Exosome-Like Vesicles

Marie C. Hogan; Luca Manganelli; John R. Woollard; Anatoliy I. Masyuk; Tatyana V. Masyuk; Rachaneekorn Tammachote; Bing Q. Huang; Alexey A. Leontovich; Thomas G. Beito; Benjamin J. Madden; M. Cristine Charlesworth; Vicente E. Torres; Nicholas F. LaRusso; Peter C. Harris; Christopher J. Ward

Proteins associated with autosomal dominant and autosomal recessive polycystic kidney disease (polycystin-1, polycystin-2, and fibrocystin) localize to various subcellular compartments, but their functional site is thought to be on primary cilia. PC1+ vesicles surround cilia in Pkhd1(del2/del2) mice, which led us to analyze these structures in detail. We subfractionated urinary exosome-like vesicles (ELVs) and isolated a subpopulation abundant in polycystin-1, fibrocystin (in their cleaved forms), and polycystin-2. This removed Tamm-Horsfall protein, the major contaminant, and subfractionated ELVs into at least three different populations, demarcated by the presence of aquaporin-2, polycystin-1, and podocin. Proteomic analysis of PKD ELVs identified 552 proteins (232 not yet in urinary proteomic databases), many of which have been implicated in signaling, including the molecule Smoothened. We also detected two other protein products of genes involved in cystic disease: Cystin, the product of the mouse cpk locus, and ADP-ribosylation factor-like 6, the product of the human Bardet-Biedl syndrome gene (BBS3). Our proteomic analysis confirmed that cleavage of polycystin-1 and fibrocystin occurs in vivo, in manners consistent with cleavage at the GPS site in polycystin-1 and the proprotein convertase site in fibrocystin. In vitro, these PKD ELVs preferentially interacted with primary cilia of kidney and biliary epithelial cells in a rapid and highly specific manner. These data suggest that PKD proteins are shed in membrane particles in the urine, and these particles interact with primary cilia.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion

Sergio A. Gradilone; Anatoliy I. Masyuk; Patrick L. Splinter; Jesus M. Banales; Bing Q. Huang; Pamela S. Tietz; Tatyana V. Masyuk; Nicholas F. LaRusso

Cholangiocytes, epithelial cells lining the biliary tree, have primary cilia extending from their apical membrane into the ductal lumen. Although important in disease, cilia also play a vital role in normal cellular functions. We reported that cholangiocyte cilia are sensory organelles responding to mechanical stimuli (i.e., luminal fluid flow) by alterations in intracellular Ca2+ and cAMP. Because cholangiocyte cilia are also ideally positioned to detect changes in composition and tonicity of bile, we hypothesized that cilia also function as osmosensors. TRPV4, a Ca2+-permeable ion channel, has been implicated in signal transduction of osmotic stimuli. Using purified rat cholangiocytes and perfused intrahepatic bile duct units (IBDUs), we found that TRPV4 is expressed on cholangiocyte cilia, and that hypotonicity induces an increase in intracellular Ca2+ in a TRPV4-, ciliary-, and extracellular calcium-dependent manner. The osmosensation of luminal tonicity by ciliary TRPV4 induces bicarbonate secretion, the main determinant of ductal bile formation, by a mechanism involving apical ATP release. Furthermore, the activation of TRPV4 in vivo, by its specific agonist, 4αPDD, induces an increase in bile flow as well as ATP release and bicarbonate secretion. Our results suggest that cholangiocyte primary cilia play an important role in ductal bile formation by acting as osmosensors.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors

Anatoliy I. Masyuk; Sergio A. Gradilone; Jesus M. Banales; Bing Q. Huang; Tatyana V. Masyuk; Seung Ok Lee; Patrick L. Splinter; Angela J. Stroope; Nicholas F. LaRusso

Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, contain primary cilia, which are mechano- and osmosensory organelles detecting changes in bile flow and osmolality and transducing them into intracellular signals. Here, we asked whether cholangiocyte cilia are chemosensory organelles by testing the expression of P2Y purinergic receptors and components of the cAMP signaling cascade in cilia and their involvement in nucleotide-induced cAMP signaling in the cells. We found that P2Y(12) purinergic receptor, adenylyl cyclases (i.e., AC4, AC6, and AC8), and protein kinase A (i.e., PKA RI-beta and PKA RII-alpha regulatory subunits), exchange protein directly activated by cAMP (EPAC) isoform 2, and A-kinase anchoring proteins (i.e., AKAP150) are expressed in cholangiocyte cilia. ADP, an endogenous agonist of P2Y(12) receptors, perfused through the lumen of isolated rat intrahepatic bile ducts or applied to the ciliated apical surface of normal rat cholangiocytes (NRCs) in culture induced a 1.9- and 1.5-fold decrease of forskolin-induced cAMP levels, respectively. In NRCs, the forskolin-induced cAMP increase was also lowered by 1.3-fold in response to ATP-gammaS, a nonhydrolyzed analog of ATP but was not affected by UTP. The ADP-induced changes in cAMP levels in cholangiocytes were abolished by chloral hydrate (a reagent that removes cilia) and by P2Y(12) siRNAs, suggesting that cilia and ciliary P2Y(12) are involved in nucleotide-induced cAMP signaling. In conclusion, cholangiocyte cilia are chemosensory organelles that detect biliary nucleotides through ciliary P2Y(12) receptors and transduce corresponding signals into a cAMP response.


American Journal of Pathology | 2004

Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease.

Tatyana V. Masyuk; Bing Q. Huang; Anatoliy I. Masyuk; Erik L. Ritman; Vicente E. Torres; Xiaofang Wang; Peter C. Harris; Nicholas F. LaRusso

Hepatic polycystic disease occurs alone or in combination with polycystic kidney disease (PKD). In autosomal recessive PKD (ARPKD), liver lesions are the major cause of morbidity and mortality in older patients. ARPKD is caused by a mutation to PKHD1 and the PCK rat is an orthologous model of disease. Recently, we showed that fibrocystin, Pkhd1 protein, is localized to primary cilia in rat cholangiocytes and that disruption of its ciliary expression results in biliary cystogenesis. This study describes biliary phenotype in the PCK rat using micro-computed tomography scanning and three-dimensional reconstruction, and light, scanning, and transmission microscopy. Our results show that the biliary tree undergoes extensive remodeling resulting in bile duct dilatation, focal budding, and formation of cysts that are initially connected to bile ducts, but throughout time separate from them. Progressive liver enlargement results from massive cyst formation while liver parenchymal volume remains unchanged. Cilia in cystic cells are abnormal consistent with the notion that the primary defect in ARPKD resulting in cystogenesis may be linked to ciliary dysfunction. Our results suggest that the PCK rat is a useful model for studies of biliary cystogenesis and treatment options of inherited cystic liver disease.


Cancer Research | 2013

HDAC6 inhibition restores ciliary expression and decreases tumor growth

Sergio A. Gradilone; Brynn N. Radtke; Pamela S. Tietz Bogert; Bing Q. Huang; Gabriella B. Gajdos; Nicholas F. LaRusso

Primary cilia are multisensory organelles recently found to be absent in some tumor cells, but the mechanisms of deciliation and the role of cilia in tumor biology remain unclear. Cholangiocytes, the epithelial cells lining the biliary tree, normally express primary cilia and their interaction with bile components regulates multiple processes, including proliferation and transport. Using cholangiocarcinoma as a model, we found that primary cilia are reduced in cholangiocarcinoma by a mechanism involving histone deacetylase 6 (HDAC6). The experimental deciliation of normal cholangiocyte cells increased the proliferation rate and induced anchorage-independent growth. Furthermore, deciliation induced the activation of mitogen-activated protein kinase and Hedgehog signaling, two important pathways involved in cholangiocarcinoma development. We found that HDAC6 is overexpressed in cholangiocarcinoma and overexpression of HDAC6 in normal cholangiocytes induced deciliation and increased both proliferation and anchorage-independent growth. To evaluate the effect of cilia restoration on tumor cells, we targeted HDAC6 by short hairpin RNA (shRNA) or by the pharmacologic inhibitor, tubastatin-A. Both approaches restored the expression of primary cilia in cholangiocarcinoma cell lines and decreased cell proliferation and anchorage-independent growth. The effects of tubastatin-A were abolished when cholangiocarcinoma cells were rendered unable to regenerate cilia by stable transfection of IFT88-shRNA. Finally, inhibition of HDAC6 by tubastatin-A also induced a significant decrease in tumor growth in a cholangiocarcinoma animal model. Our data support a key role for primary cilia in malignant transformation, provide a plausible mechanism for their involvement, and suggest that restoration of primary cilia in tumor cells by HDAC6 targeting may be a potential therapeutic approach for cholangiocarcinoma.


PLOS Pathogens | 2013

Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense.

Guoku Hu; Ai Yu Gong; Amanda L. Roth; Bing Q. Huang; H. Ward; Guan Zhu; Nicholas F. LaRusso; Nancy D. Hanson; Xian Ming Chen

Exosomes are membranous nanovesicles released by most cell types from multi-vesicular endosomes. They are speculated to transfer molecules to neighboring or distant cells and modulate many physiological and pathological procedures. Exosomes released from the gastrointestinal epithelium to the basolateral side have been implicated in antigen presentation. Here, we report that luminal release of exosomes from the biliary and intestinal epithelium is increased following infection by the protozoan parasite Cryptosporidium parvum. Release of exosomes involves activation of TLR4/IKK2 signaling through promoting the SNAP23-associated vesicular exocytotic process. Downregulation of let-7 family miRNAs by activation of TLR4 signaling increases SNAP23 expression, coordinating exosome release in response to C. parvum infection. Intriguingly, exosomes carry antimicrobial peptides of epithelial cell origin, including cathelicidin-37 and beta-defensin 2. Activation of TLR4 signaling enhances exosomal shuttle of epithelial antimicrobial peptides. Exposure of C. parvum sporozoites to released exosomes decreases their viability and infectivity both in vitro and ex vivo. Direct binding to the C. parvum sporozoite surface is required for the anti-C. parvum activity of released exosomes. Biliary epithelial cells also increase exosomal release and display exosome-associated anti-C. parvum activity following LPS stimulation. Our data indicate that TLR4 signaling regulates luminal exosome release and shuttling of antimicrobial peptides from the gastrointestinal epithelium, revealing a new arm of mucosal immunity relevant to antimicrobial defense.


Infection and Immunity | 2004

Apical Organelle Discharge by Cryptosporidium parvum Is Temperature, Cytoskeleton, and Intracellular Calcium Dependent and Required for Host Cell Invasion

Xian Ming Chen; Steven P. O'Hara; Bing Q. Huang; Jeremy B. Nelson; Jim Jung-Ching Lin; Guan Zhu; H. Ward; Nicholas F. LaRusso

ABSTRACT The apical organelles in apicomplexan parasites are characteristic secretory vesicles containing complex mixtures of molecules. While apical organelle discharge has been demonstrated to be involved in the cellular invasion of some apicomplexan parasites, including Toxoplasma gondii and Plasmodium spp., the mechanisms of apical organelle discharge by Cryptosporidium parvum sporozoites and its role in host cell invasion are unclear. Here we show that the discharge of C. parvum apical organelles occurs in a temperature-dependent fashion. The inhibition of parasite actin and tubulin polymerization by cytochalasin D and colchicines, respectively, inhibited parasite apical organelle discharge. Chelation of the parasites intracellular calcium also inhibited apical organelle discharge, and this process was partially reversed by raising the intracellular calcium concentration by use of the ionophore A23187. The inhibition of parasite cytoskeleton polymerization by cytochalasin D and colchicine and the depletion of intracellular calcium also decreased the gliding motility of C. parvum sporozoites. Importantly, the inhibition of apical organelle discharge by C. parvum sporozoites blocked parasite invasion of, but not attachment to, host cells (i.e., cultured human cholangiocytes). Moreover, the translocation of a parasite protein, CP2, to the host cell membrane at the region of the host cell-parasite interface was detected; an antibody to CP2 decreased the C. parvum invasion of cholangiocytes. These data demonstrate that the discharge of C. parvum sporozoite apical organelle contents occurs and that it is temperature, intracellular calcium, and cytoskeleton dependent and required for host cell invasion, confirming that apical organelles play a central role in C. parvum entry into host cells.


Gastroenterology | 2003

Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src

Xian Ming Chen; Bing Q. Huang; Patrick L. Splinter; Hong Cao; Guan Zhu; Mark A. McNiven; Nicholas F. LaRusso

BACKGROUND & AIMS Cryptosporidium parvum invasion of epithelia requires polymerization of host cell actin at the attachment site. We analyzed the role of host cell c-Src, a cytoskeleton-associated protein tyrosine kinase, in C. parvum invasion of biliary epithelia. METHODS In vitro models of biliary cryptosporidiosis using a human biliary epithelial cell line were used to assay the role of c-Src signaling pathway in C. parvum invasion. RESULTS c-Src and cortactin, an actin-binding protein and a substrate for c-Src, were recruited to the parasite-host cell interface during C. parvum invasion. Tyrosine phosphorylation of cortactin in infected cells was also detected. Inhibition of host cell c-Src significantly blocked C. parvum -induced accumulation and tyrosine phosphorylation of cortactin and actin polymerization at the attachment sites, thereby inhibiting C. parvum invasion of biliary epithelial cells. A triple mutation of tyrosine of cortactin in the epithelia also diminished C. parvum invasion. In addition, proteins originating from the parasite were detected within infected cells at the parasite-host cell interface. Antiserum against C. parvum membrane proteins blocked accumulation of c-Src and cortactin and significantly decreased C. parvum invasion. No accumulation of the endocytosis-related proteins, dynamin 2 and clathrin, was found at the parasite-host cell interface; also, inhibition of dynamin 2 did not block C. parvum invasion. CONCLUSIONS C. parvum invasion of biliary epithelial cells requires host cell tyrosine phosphorylation of cortactin by a c-Src-mediated signaling pathway to induce actin polymerization at the attachment site, a process associated with microbial secretion but independent of host cell endocytosis.


Gastroenterology | 2010

Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD

Sergio A. Gradilone; Tatyana V. Masyuk; Bing Q. Huang; Jesus M. Banales; Guillermo L. Lehmann; Brynn N. Radtke; Angela J. Stroope; Anatoliy I. Masyuk; Patrick L. Splinter; Nicholas F. LaRusso

BACKGROUND & AIMS In polycystic liver diseases, cyst formation involves cholangiocyte hyperproliferation. In polycystic kidney (PCK) rats, an animal model of autosomal-recessive polycystic kidney disease (ARPKD), decreased intracellular calcium [Ca(2+)](i) in cholangiocytes is associated with hyperproliferation. We recently showed transient receptor potential vanilloid 4 (Trpv4), a calcium-entry channel, is expressed in normal cholangiocytes and its activation leads to [Ca(2+)](i) increase. Thus, we hypothesized that pharmacologic activation of Trpv4 might reverse the hyperproliferative phenotype of PCK cholangiocytes. METHODS Trpv4 expression was examined in liver of normal and PCK rats, normal human beings, and patients with autosomal-dominant polycystic kidney disease or ARPKD. Trpv4 activation effect on cell proliferation and cyst formation was assessed in cholangiocytes derived from normal and PCK rats. The in vivo effects of Trpv4 activation on kidney and liver cysts was analyzed in PCK rats. RESULTS Trpv4 was overexpressed both at messenger RNA (8-fold) and protein (3-fold) levels in PCK cholangiocytes. Confocal and immunogold electron microscopy supported Trpv4 overexpression in the livers of PCK rats and ARPKD or autosomal-dominant polycystic kidney disease patients. Trpv4 activation in PCK cholangiocytes increased [Ca(2+)](i) by 30%, inhibiting cell proliferation by approximately 25%-50% and cyst growth in 3-dimensional culture (3-fold). Trpv4-small interfering RNA silencing blocked effects of Trpv4 activators by 70%. Trpv4 activation was associated with Akt phosphorylation and beta-Raf and Erk1/2 inhibition. In vivo, Trpv4 activation induced a significant decrease in renal cystic area and a nonsignificant decrease in liver cysts. CONCLUSIONS Taken together, our in vitro and in vivo data suggest that increasing intracellular calcium by Trpv4 activation may represent a potential therapeutic approach in PKD.


Journal of Parasitology | 2004

Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: A morphologic study

Bing Q. Huang; Xian Ming Chen; Nicholas F. LaRusso

To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasites plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell–parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell– parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.

Collaboration


Dive into the Bing Q. Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge