Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingbing Fan is active.

Publication


Featured researches published by Bingbing Fan.


Journal of Materials Chemistry | 2015

Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties

Biao Zhao; Gang Shao; Bingbing Fan; Wanyu Zhao; Yajun Xie; Rui Zhang

Flower-like CuS hollow microspheres composed of nanoflakes have been successfully prepared via a facile solvothermal method. The crystal structure, morphology and microwave absorption properties of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a network analyser. The effects of reaction temperature, concentration of the reagents and reaction time on the structures and morphologies of the CuS products were investigated using XRD and SEM techniques. A plausible mechanism for the formation of hollow architectures related to Ostwald ripening was proposed. The CuS/paraffin composite containing 30 wt% CuS hollow microspheres shows the best microwave absorption properties compared with other CuS/paraffin composites. The minimum reflection loss of −31.5 dB can be observed at 16.7 GHz and reflection loss below −10 dB is 3.6 GHz (14.4–18.0 GHz) with a thickness of only 1.8 mm. The effective absorption (below −10 dB, 90% microwave absorption) bandwidth can be tuned between 6.2 GHz and 18.0 GHz for the absorber with a thin thickness in the range 1.5–4.0 mm. The results indicate that the microwave absorption properties of flower-like CuS hollow microspheres possess the advantages of broad bandwidth, strong absorption, lightweight and thin thickness are superior to those of other absorbing materials.


ACS Applied Materials & Interfaces | 2015

Morphology-Control Synthesis of a Core–Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities

Biao Zhao; Wanyu Zhao; Gang Shao; Bingbing Fan; Rui Zhang

In this work, dendritelike and rodlike NiCu alloys were prepared by a one-pot hydrothermal process at various reaction temperatures (120, 140, and 160 °C). The structure and morphology were analyzed by scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and transmission electron microscopy, which that demonstrate NiCu alloys have core-shell heterostructures with Ni as the shell and Cu as the core. The formation mechanism of the core-shell structures was also discussed. The uniform and perfect dendritelike NiCu alloy obtained at 140 °C shows outstanding electromagnetic-wave absorption properties. The lowest reflection loss (RL) of -31.13 dB was observed at 14.3 GHz, and the effective absorption (below -10 dB, 90% attenuation) bandwidth can be adjusted between 4.4 and 18 GHz with a thin absorber thickness in the range of 1.2-4.0 mm. The outstanding electromagnetic-wave-absorbing properties are ascribed to space-charge polarization arising from the heterogeneous structure of the NiCu alloy, interfacial polarization between the alloy and paraffin, and continuous micronetworks and vibrating microcurrent dissipation originating from the uniform and perfect dendritelike shape of NiCu prepared at 140 °C.


Journal of Materials Chemistry | 2011

Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance

Deliang Chen; Minna Liu; Li Yin; Tao Li; Zhen Yang; Xinjian Li; Bingbing Fan; Hailong Wang; Rui Zhang; Zhengxin Li; Hongliang Xu; Hongxia Lu; Daoyuan Yang; Jing Sun; Lian Gao

Molybdate-based inorganic–organic hybrid disks with a highly ordered layered structure were synthesized via an acid–base reaction of white molybdic acid (MoO3·H2O) with n-octylamine (C8H17NH2) in ethanol at room temperature. The thermal treatment of the as-obtained molybdate-based inorganic–organic hybrid disks at 550 °C in air led to formation of orthorhombic α-MoO3 nanoplates. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal analysis (TG–DTA), Fourier-transform infrared (FT–IR) spectra, Raman spectra, and a laser-diffraction grain-size analyzer were used to characterize the starting materials, the intermediate hybrid precursors and the final α-MoO3 nanoplates. The XRD, FT–IR and TG–DTA results suggested that the molybdate-based inorganic–organic hybrid compound, with a possible composition of (C8H17NH3)2MoO4, was of a highly ordered lamellar structure with an interlayer distance of 2.306(1) nm, and the n-alkyl chains in the interlayer places took a double-layer arrangement with a tilt angle of 51° against the inorganic MoO6 octahedra layers. The SEM images indicated that the molybdate-based inorganic–organic hybrids took on a well-dispersed disk-like morphology, which differed distinctly from the severely aggregated morphology of their starting MoO3·H2O powders. During the calcining process, the disk-like morphology of the hybrid compounds was well inherited into the orthorhombic α-MoO3 nanocrystals, showing a definite plate-like shape. The α-MoO3 nanoplates obtained were of a single-crystalline structure, with a side-length of 1–2 μm and a thickness of several nanometres, along a thickness direction of [010]. The above α-MoO3 nanoplates were of a loose aggregating texture and high dispersibility. The chemical sensors derived from the as-obtained α-MoO3 nanoplates showed an enhanced and selective gas-sensing performance towards ethanol vapors. The α-MoO3 nanoplate sensors reached a high sensitivity of 44–58 for an 800 ppm ethanol vapor operating at 260–400 °C, and their response times were less than 15 s.


ACS Applied Materials & Interfaces | 2016

Yolk–Shell Ni@SnO2 Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties

Biao Zhao; Xiaoqin Guo; Wanyu Zhao; Jiushuai Deng; Gang Shao; Bingbing Fan; Zhongyi Bai; Rui Zhang

In this study, yolk-shell Ni@SnO2 composites with a designable interspace were successfully prepared by the simple acid etching hydrothermal method. The Ni@void@SnO2 composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that interspaces exist between the Ni cores and SnO2 shells. Moreover, the void can be adjusted by controlling the hydrothermal reaction time. The unique yolk-shell Ni@void@SnO2 composites show outstanding electromagnetic wave absorption properties. A minimum reflection loss (RLmin) of -50.2 dB was obtained at 17.4 GHz with absorber thickness of 1.5 mm. In addition, considering the absorber thickness, minimal reflection loss, and effective bandwidth, a novel method to judge the effective microwave absorption properties is proposed. On the basis of this method, the best microwave absorption properties were obtained with a 1.7 mm thick absorber layer (RLmin= -29.7 dB, bandwidth of 4.8 GHz). The outstanding electromagnetic wave absorption properties stem from the unique yolk-shell structure. These yolk-shell structures can tune the dielectric properties of the Ni@air@SnO2 composite to achieve good impedance matching. Moreover, the designable interspace can induce interfacial polarization, multiple reflections, and microwave plasma.


ACS Applied Materials & Interfaces | 2015

Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities.

Biao Zhao; Bingbing Fan; Gang Shao; Wanyu Zhao; Rui Zhang

In this work, the magnetic-dielectric core-shell heterostructure composites with the core of Ni submicron spheres and the shell of SnO2 nanorods were prepared by a facile two-step route. The crystal structure and morphology were investigated by X-ray diffraction analysis, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). FESEM and TEM measurements present that SnO2 nanorods were perpendicularly grown on the surfaces of Ni spheres and the density of the SnO2 nanorods could be tuned by simply varying the addition amount of Sn(2+) in this process. The morphology of Ni/SnO2 composites were also determined by the concentration of hydrochloric acid and a plausible formation mechanism of SnO2 nanorods-coated Ni spheres was proposed based on hydrochloric acid concentration dependent experiments. Ni/SnO2 composites exhibit better thermal stability than pristine Ni spheres based on thermalgravimetric analysis (TGA). The measurement on the electromagnetic (EM) parameters indicates that SnO2 nanorods can improve the impedance matching condition, which is beneficial for the improvement of electromagnetic wave absorption. When the coverage density of SnO2 nanorod is in an optimum state (diameter of 10 nm and length of about 40-50 nm), the optimal reflection loss (RL) of electromagnetic wave is -45.0 dB at 13.9 GHz and the effective bandwidth (RL below -10 dB) could reach to 3.8 GHz (12.3-16.1 GHz) with the absorber thickness of only 1.8 mm. By changing the loading density of SnO2 nanorods, the best microwave absorption state could be tuned at 1-18 GHz band. These results pave an efficient way for designing new types of high-performance electromagnetic wave absorbing materials.


Nanoscale | 2012

Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

Deliang Chen; Tao Li; Qianqian Chen; Jiabing Gao; Bingbing Fan; Jian Li; Xinjian Li; Rui Zhang; Jing Sun; Lian Gao

The hierarchical photocatalysts of Ag/AgCl@plate-WO₃ have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO₃ nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag⁺-WO₃ suspensions with a Cl⁻ solution added drop-wise was developed to synthesize AgCl@WO₃ composites, which were then photoreduced to form Ag/AgCl@WO₃ nanostructures in situ. WO₃ nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO₃ photocatalysts, and the effects of the WO₃ contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N₂ adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO₃ nanostructures under visible light (λ ≥ 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO₃ photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO₃ and TiO₂ (P25). The contents and morphologies of the WO₃ substrates in the Ag/AgCl@plate-WO₃ photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.


ACS Applied Materials & Interfaces | 2015

Preparation of Honeycomb SnO2 Foams and Configuration-Dependent Microwave Absorption Features

Biao Zhao; Bingbing Fan; Yawei Xu; Gang Shao; Xiaodong Wang; Wanyu Zhao; Rui Zhang

Ordered honeycomb-like SnO2 foams were successfully synthesized by means of a template method. The honeycomb SnO2 foams were analyzed by X-ray diffraction (XRD), thermogravimetric and differential scanning calorimetry (TG-DSC), laser Raman spectra, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR). It can be found that the SnO2 foam configurations were determined by the size of polystyrene templates. The electromagnetic properties of ordered SnO2 foams were also investigated by a network analyzer. The results reveal that the microwave absorption properties of SnO2 foams were dependent on their configuration. The microwave absorption capabilities of SnO2 foams were increased by increasing the size of pores in the foam configuration. Furthermore, the electromagnetic wave absorption was also correlated with the pore contents in SnO2 foams. The large and high amounts pores can bring about more interfacial polarization and corresponding relaxation. Thus, the perfect ordered honeycomb-like SnO2 foams obtained in the existence of large amounts of 322 nm polystyrene spheres showed the outstanding electromagnetic wave absorption properties. The minimal reflection loss (RL) is -37.6 dB at 17.1 GHz, and RL less than -10 dB reaches 5.6 GHz (12.4-18.0 GHz) with thin thickness of 2.0 mm. The bandwidth (<-10 dB, 90% microwave dissipation) can be monitored in the frequency regime of 4.0-18.0 GHz with absorber thickness of 2.0-5.0 mm. The results indicate that these ordered honeycomb SnO2 foams show the superiorities of wide-band, high-efficiency absorption, multiple reflection and scatting, high antioxidation, lightweight, and thin thickness.


Nano Research | 2017

Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties

Biao Zhao; Xiaoqin Guo; Wanyu Zhao; Jiushuai Deng; Bingbing Fan; Gang Shao; Zhongyi Bai; Rui Zhang

Yolk–shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk–shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk–shell structures. The yolk–shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk–shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as–43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk–shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.


RSC Advances | 2014

Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres

Biao Zhao; Gang Shao; Bingbing Fan; Wanyu Zhao; Rui Zhang

Core–shell composite microspheres with Ni cores and Al2O3 nanoflake shells have been successfully fabricated by the hydrothermal deposition method. The electromagnetic parameters of the Ni microspheres and Ni/Al2O3 composites are measured by a coaxial line method. The tangent losses for the Ni/Al2O3 composite are larger than those of the Ni. A significant enhancement of electromagnetic absorption (EMA) performance of Ni microspheres coated by the alumina shells was achieved over the 1–18 GHz. The reflection loss (RL) less than −10 dB of the composite was obtained over 7.5–18.0 GHz by tuning an appropriate sample thickness between 1.3 and 2.2 mm, and an optimal RL of −33.03 dB was obtained at 9.2 GHz with a thin absorber thickness of 2.0 mm. The coating of the dielectric alumina shell significantly enhanced the microwave absorption performance due to the enhancement of interface polarization between the metals and dielectric interfaces, the synergetic effect between the dielectric loss and magnetic loss and unique flake-like dielectric alumina.


Dalton Transactions | 2015

Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids

Biao Zhao; Wanyu Zhao; Gang Shao; Bingbing Fan; Rui Zhang

In this study, novel porous hollow Ni/SnO2 hybrids were prepared by a facile and flexible two-step approach composed of solution reduction and subsequent reaction-induced acid corrosion. In our protocol, it can be found that the hydrothermal temperature exerts a vital influence on the phase crystal and morphology of Ni/SnO2 hybrids. Notably, the Ni microspheres might be completely corroded in the hydrothermal process at 220 °C. The complex permittivity and permeability of Ni/SnO2 hybrids-paraffin wax composite were measured based on a vector network analyzer in the frequency range of 1-18 GHz. Electromagnetic absorption properties of samples were evaluated by transmission line theory. Ni/SnO2 hybrid composites exhibit superior electromagnetic absorption properties in comparison with pristine Ni microspheres. The outstanding electromagnetic absorption performances can be observed for the hollow porous Ni/SnO2 hybrid prepared at 200 °C. The minimum reflection loss is -36.7 dB at 12.3 GHz, and the effective electromagnetic wave absorption band (RL < -10 dB, 90% microwave attenuation) was in the frequency range of 10.6-14.0 GHz with a thin thickness of 1.7 mm. Excellent electromagnetic absorption properties were assigned to the improved impedance match, more interfacial polarization and unique hollow porous structures, which can result in microwave multi-reflection and scattering. This novel hollow porous hybrid is an attractive candidate for new types of high performance electromagnetic wave-absorbing materials, which satisfies the current requirements of electromagnetic absorbing materials, which include wide-band absorption, high-efficiency absorption capability, thin thickness and light weight.

Collaboration


Dive into the Bingbing Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Yin

Zhengzhou University

View shared research outputs
Researchain Logo
Decentralizing Knowledge