Bingbing Nie
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bingbing Nie.
Computer Methods in Biomechanics and Biomedical Engineering | 2016
Bingbing Nie; Matthew B. Panzer; Adwait Mane; Alexander R. Mait; John-Paul Donlon; Jason Forman; Richard W. Kent
Abstract Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force–elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.
Traffic Injury Prevention | 2017
Bingbing Nie; Jeffrey Richard Crandall; Matthew B. Panzer
ABSTRACT Objective: The lower extremity of the occupant represents the most frequently injured body region in motor vehicle crashes. Knee airbags (KABs) have been implemented as a potential countermeasure to reduce lower extremity injuries. Despite the increasing prevalence of KABs in vehicles, the biomechanical interaction of the human lower extremity with the KAB has not been well characterized. This study uses computational models of the human body and KABs to explore how KAB design may influence the impact response of the occupants lower extremities. Methods: The analysis was conducted using a 50th percentile male occupant human body model with deployed KABs in a simplified vehicle interior. The 2 common KAB design types, bottom-deploy KAB (BKAB) and rear-deploy KAB (RKAB), were both included. A state-of-the-art airbag modeling technique, the corpuscular particle method, was adopted to represent the deployment dynamics of the unfolding airbags. Validation of the environment model was performed based on previously reported test results. The kinematic responses of the occupant lower extremities were compared under both KAB designs, 2 seating configurations (in-position and out-of-position), and 3 loading conditions (static, frontal, and oblique impacts). A linear statistical model was used to assess factor significance considering the impact responses of the occupant lower extremities. Results: The presence of a KAB had a significant influence on the lower extremity kinematics compared to no KAB (P <.05) by providing early restraint and distributing contact force on the legs during airbag deployment. For in-position occupants, the KAB generally tended to decrease tibia loadings. The RKAB led to greater lateral motion of the legs compared to the BKAB, resulting in higher lateral displacement at the knee joint and abduction angle change (51.2 ± 21.7 mm and 15° ± 6.0°) over the dynamic loading conditions. Change in the seating position led to a significant difference in occupant kinematic and kinetic parameters (P <.05). For the out-of-position (forward-seated) occupant, the earlier contact between the lower extremity and the deploying KAB resulted in 28.4° ± 5.8° greater abduction, regardless of crash scenarios. Both KAB types reduced the axial force in the femur relative to no KAB. Overall, the out-of-position occupant sustained a raised axial force and bending moment of the tibia by 0.8 ± 0.2 kN and 21.1 ± 8.7 Nm regardless of restraint use. Conclusions: The current study provided a preliminary computational examination on KAB designs based on a limited set of configurations in an idealized vehicle interior. Results suggested that the BKAB tended to provide more coverage and less leg abduction compared to the RKAB in oblique impact and/or the selected out-of-position scenario. An out-of-position occupant was associated with larger abduction and lower extremity loads over all occupant configurations. Further investigations are recommended to obtain a full understanding of the KAB performance in a more realistic vehicle environment.
Journal of The Mechanical Behavior of Biomedical Materials | 2017
Bingbing Nie; Matthew B. Panzer; Adwait Mane; Alexander R. Mait; John-Paul Donlon; Jason Forman; Richard W. Kent
The mechanical behavior of ankle ligaments at the structural level can be characterized by force-displacement curves in the physiologic phase up to the initiation of failure. However, these properties are difficult to characterize in vitro due to the experimental difficulties in replicating the complex geometry and non-uniformity of the loading state in situ. This study used a finite element parametric modeling approach to determine the in situ mechanical behavior of ankle ligaments at neutral foot position for a mid-sized adult foot from experimental derived bony kinematics. Nine major ankle ligaments were represented as a group of fibers, with the force-elongation behavior of each fiber element characterized by a zero-force region and a region of constant stiffness. The zero-force region, representing the initial tension or slackness of the whole ligament and the progressive fiber uncrimping, was identified against a series of quasi-static experiments of single foot motion using simultaneous optimization. A range of 0.33-3.84mm of the zero-force region was obtained, accounting for a relative length of 6.7±3.9%. The posterior ligaments generally exhibit high-stiffness in the loading region. Following this, the ankle model implemented with in situ ligament behavior was evaluated in response to multiple loading conditions and proved capable of predicting the bony kinematics accurately in comparison to the cadaveric response. Overall, the parametric ligament modeling demonstrated the feasibility of linking the gross structural behavior and the underlying bone and ligament mechanics that generate them. Determination of the in situ mechanical properties of ankle ligaments provides a better understanding of the nonlinear nature of the ankle joint. Applications of this knowledge include functional ankle joint mechanics and injury biomechanics.
Journal of Biomechanics | 2017
Alexander R. Mait; Adwait Mane; Jason Forman; John Paul Donlon; Bingbing Nie; Richard W. Kent
The purpose of this study was to determine the long-time and transient characteristics of the moment generated by external (ER) and internal (IR) rotation of the calcaneus with respect to the tibia. Two human cadaver legs were disarticulated at the knee joint while maintaining the connective tissue between the tibia and fibula. An axial rotation of 21° was applied to the proximal tibia to generate either ER or IR while the fibula was unconstrained and the calcaneus was permitted to translate in the transverse plane. These boundary conditions were intended to allow natural motion of the fibula and for the effective applied axis of rotation to move relative to the ankle and subtalar joints based on natural articular motions among the tibia, fibula, talus, and calcaneus. A load cell at the proximal tibia measured all components of force and moment. A quasi-linear model of the moment along the tibia axis was developed to determine the transient and long-time loads generated by this ER/IR. Initially neutral, everted, inverted, dorsiflexed, and plantarflexed foot orientations were tested. For the neutral position, the transient elastic moment was 16.5N-m for one specimen and 30.3N-m for the other in ER with 26.3 and 32.1N-m in IR. The long-time moments were 5.5 and 13.2N-m (ER) and 9.0 and 9.5N-m (IR). These loads were found to be transient over time similar to previous studies on other biological structures where the moment relaxed as time progressed after the initial ramp in rotation.
Traffic Injury Prevention | 2016
Bingbing Nie; Qing Zhou
ABSTRACT Objective: Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk. Methods: The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity—that is, knee ligament rupture and long bone fracture—was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given cars front-end design. Results: Newer passenger cars exhibited a “flatter” front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk. Conclusions: The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.
SAE International journal of transportation safety | 2014
Bingbing Nie; Qing Zhou; Yong Xia; Jisi Tang
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis. Language: en
International Journal of Vehicle Design | 2014
Bingbing Nie; Yong Xia; Qing Zhou; Jun Huang; Bing Deng; Mark O. Neal
This study introduces a response–surface–based design tool of vehicle front–end for pedestrian lower limb impact protection performance. Using a simplified parametric vehicle front–end model, a pedestrian human body model (HBM) and impact simulations, a design of experiment (DOE) study is conducted, and based on the results, response surfaces for lower limb injury predictions have been generated. The Latin Hypercube sampling scheme is used to create the models of the front structure of a variety of vehicles, and reasonable geometry and stiffness variables are included. The response surfaces have been implemented in a graphical user interface (GUI) to provide simple and intuitive feedback on human lower limb injury predictions as the vehicle front–end design changes.
SAE International journal of transportation safety | 2013
Bingbing Nie; Yong Xia; Qing Zhou; Jun Huang; Bing Deng; Mark O. Neal
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs. Language: en
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering | 2013
Jun Huang; Yong Xia; Bingbing Nie; Qing Zhou
Car-to-pedestrian accidents have become a global problem, and car manufacturers have made great efforts to redesign the car for pedestrian protection. For fast computer simulations of pedestrian legform-to-bumper impacts, which are usually needed for the large design-of-experiments matrix, quite a number of simplified bumper models have been built to represent detailed finite element models adopted from full-vehicle models. However, it has been a difficult balance between simplifying the structure to achieve fast computation and keeping the essential characteristics to obtain valid results. This paper documents a development and validation of a simplified bumper system model. The spring stiffness properties are determined by considering the loading rate effect and the local deformation effect of the vehicle’s front-end structure, which is essential for legform impact simulations. To validate the simplified bumper system model, the simulation results from the simplified bumper system model and from a detailed bumper system model are compared. This study also indicates that, to improve the responses of the legform bending and shear, the vehicle’s bumper should be modelled as two separate spring systems since the impact interaction is within the knee joint centre of the legform.
International Journal of Crashworthiness | 2018
Huipeng Chen; Varun Bollapragada; Taewung Kim; Bingbing Nie; Gwansik Park; Jeff R. Crandall
ABSTRACT The interaction of the shoulder complex of the pedestrian and the striking vehicle strongly influences the responses and injury risk of the head, neck and torso during vehicle-to-pedestrian impacts. While the current MADYMO facet pedestrian model met the shoulder force corridor provided by ISO9790, the kinematics of its shoulder complex during a lateral blunt impact has not been evaluated. In this study, this model was evaluated relative to more detailed and newly available cadaveric responses under lateral shoulder impact, and exhibited much higher shoulder impact force and displacement. To improve the biofidelity of the shoulder complex, a component level validation was performed on its upper arm model based on component-level upper arm compression test data by maximising ISO rating scores between the cadaveric and the model responses. After the improvement of the arm model, the updated pedestrian model showed improved biofidelity based on ISO rating scores on shoulder impact force, displacement and shoulder deflection under lateral shoulder impact conditions. Finally, under a 20 km/h sedan-to-pedestrian lateral impact, the 15% higher head relative impact velocity was observed for the updated pedestrian model, which demonstrated the strong influence of the shoulder complex on the pedestrian head response.