Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingbing X. Li is active.

Publication


Featured researches published by Bingbing X. Li.


Current Cancer Drug Targets | 2010

Targeting CREB for Cancer Therapy: Friend or Foe

Xiangshu Xiao; Bingbing X. Li; Bryan Mitton; Alan K. Ikeda; Kathleen M. Sakamoto

The cyclic-AMP response element-binding protein (CREB) is a nuclear transcription factor activated by phosphorylation at Ser133 by multiple serine/threonine (Ser/Thr) kinases. Upon phosphorylation, CREB binds the transcriptional co-activator, CBP (CREB-binding protein), to initiate CREB-dependent gene transcription. CREB is a critical regulator of cell differentiation, proliferation and survival in the nervous system. Recent studies have shown that CREB is involved tumor initiation, progression and metastasis, supporting its role as a proto-oncogene. Overexpression and over-activation of CREB were observed in cancer tissues from patients with prostate cancer, breast cancer, non-small-cell lung cancer and acute leukemia while down-regulation of CREB in several distinct cancer cell lines resulted in inhibition of cell proliferation and induction of apoptosis, suggesting that CREB may be a promising target for cancer therapy. Although CREB, as a transcription factor, is a challenging target for small molecules, various small molecules have been discovered to inhibit CREB phosphorylation, CREB-DNA, or CREB-CBP interaction. These results suggest that CREB is a suitable transcription factor for drug targeting and therefore targeting CREB could represent a novel strategy for cancer therapy.


ChemBioChem | 2009

Discovery of a small-molecule inhibitor of the KIX-KID interaction.

Bingbing X. Li; Xiangshu Xiao

Protein–protein interactions are essential for transmitting signals from extracellular space to cell nuclei and also for cell–cell communication. Small molecules that target protein–protein interactions, therefore, are great research tools for dissecting the biological functions of a given protein–protein interaction and potential therapeutics for many different human diseases.[1] However, targeting protein–protein interactions by small molecules remains a significant challenge.[1, 2]


Journal of Medicinal Chemistry | 2015

Identification of a Potent Inhibitor of CREB-Mediated Gene Transcription with Efficacious in Vivo Anticancer Activity.

Fuchun Xie; Bingbing X. Li; Alina Kassenbrock; Changhui Xue; Xiaoyan Wang; David Z. Qian; Rosalie C. Sears; Xiangshu Xiao

Recent studies have shown that nuclear transcription factor cyclic adenosine monophosphate response element binding protein (CREB) is overexpressed in many different types of cancers. Therefore, CREB has been pursued as a novel cancer therapeutic target. Naphthol AS-E and its closely related derivatives have been shown to inhibit CREB-mediated gene transcription and cancer cell growth. Previously, we identified naphthamide 3a as a different chemotype to inhibit CREB’s transcription activity. In a continuing effort to discover more potent CREB inhibitors, a series of structural congeners of 3a was designed and synthesized. Biological evaluations of these compounds uncovered compound 3i (666-15) as a potent and selective inhibitor of CREB-mediated gene transcription (IC50 = 0.081 ± 0.04 μM). 666-15 also potently inhibited cancer cell growth without harming normal cells. In an in vivo MDA-MB-468 xenograft model, 666-15 completely suppressed the tumor growth without overt toxicity. These results further support the potential of CREB as a valuable cancer drug target.


Bioorganic & Medicinal Chemistry | 2012

Structure-activity relationship studies of naphthol AS-E and its derivatives as anticancer agents by inhibiting CREB-mediated gene transcription.

Bingbing X. Li; Kinrin Yamanaka; Xiangshu Xiao

CREB (cyclic AMP-response element binding protein) is a downstream transcription factor of a multitude of signaling pathways emanating from receptor tyrosine kinases or G-protein coupled receptors. CREB is not activated until it is phosphorylated at Ser133 and its subsequent binding to CREB-binding protein (CBP) through kinase-inducible domain (KID) in CREB and KID-interacting (KIX) domain in CBP. Tumor tissues from various organs present higher level of expression and activation of CREB. Thus CREB has been proposed as a promising cancer drug target. We previously described naphthol AS-E (1a) as a small molecule inhibitor of CREB-mediated gene transcription in living cells. Here we report the structure-activity relationship (SAR) studies of 1a by modifying the appendant phenyl ring. All the compounds were evaluated for in vitro inhibition of KIX-KID interaction, cellular inhibition of CREB-mediated gene transcription and inhibition of proliferation of four cancer cell lines (A549, MCF-7, MDA-MB-231 and MDA-MB-468). SAR indicated that a small and electron-withdrawing group was preferred at the para-position for KIX-KID interaction inhibition. Compound 1a was selected for further biological characterization and it was found that 1a down-regulated the expression of endogenous CREB target genes. Expression of a constitutively active CREB mutant, VP16-CREB in MCF-7 cells rendered the cells resistant to 1a, suggesting that CREB was critical in mediating its anticancer activity. Furthermore, 1a was not toxic to normal human cells. Collectively, these data support that 1a represents a structural template for further development into potential cancer therapeutics with a novel mechanism of action.


Leukemia | 2016

Small molecule inhibition of cAMP response element binding protein in human acute myeloid leukemia cells

Bryan Mitton; Hee-Don Chae; K Hsu; Ritika Dutta; G Aldana-Masangkay; Roberto Ferrari; Kara L. Davis; Bruce Tiu; A Kaul; Norman J. Lacayo; Gary V. Dahl; Fuchun Xie; Bingbing X. Li; M R Breese; E M Landaw; Garry P. Nolan; Matteo Pellegrini; S Romanov; Xiangshu Xiao; Kathleen M. Sakamoto

The transcription factor CREB (cAMP Response-Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP–CREB interaction induced apoptosis and cell-cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP–CREB interaction mostly affects apoptotic, cell-cycle and survival pathways, which may represent a novel approach for AML therapy.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification, synthesis and evaluation of substituted benzofurazans as inhibitors of CREB-mediated gene transcription

Fuchun Xie; Bingbing X. Li; Candice Broussard; Xiangshu Xiao

Cyclic-AMP response-element binding protein (CREB) is a stimulus-activated transcription factor. Its transcription activity requires its binding with CREB-binding protein (CBP) after CREB is phosphorylated at Ser133. The domains involved for CREB-CBP interaction are kinase-inducible domain (KID) from CREB and KID-interacting domain (KIX) from CBP. Recent studies suggest that CREB is an attractive target for novel cancer therapeutics. To identify novel chemotypes as inhibitors of KIX-KID interaction, we screened the NCI-diversity set of compounds using a split renilla luciferase assay and identified 2-[(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio]pyridine 1-oxide (compound 1, NSC228155) as a potent inhibitor of KIX-KID interaction. However, compound 1 was not particularly selective against CREB-mediated gene transcription in living HEK 293T cells. Further structure-activityrelationship studies identified 4-aniline substituted nitrobenzofurazans with improved selectivity.


ACS Medicinal Chemistry Letters | 2014

Novel Type of Prodrug Activation through a Long-Range O,N-Acyl Transfer: A Case of Water-Soluble CREB Inhibitor.

Bingbing X. Li; Fuchun Xie; Qiuhua Fan; Kerry M. Barnhart; Curtis E. Moore; Arnold L. Rheingold; Xiangshu Xiao

CREB (cAMP response element binding protein) has been shown to play an important role in tumor initiation, progression, and metastasis. We discovered that naphthol AS-E, a cell-permeable CREB inhibitor, presented antiproliferative activity in a broad panel of cancer cell lines in vitro. However, it has limited aqueous solubility. In this report, we described a water-soluble inhibitor (compound 6) of CREB-mediated gene transcription with in vivo anticancer activity. Unexpectedly, compound 6 was found to be a prodrug of compound 12 necessitating an unprecedented long-range O,N-acyl transfer. The rate of this transfer was pH- and temperature-dependent. To the best of our knowledge, this is the first time to show that a long-range O,N-acyl transfer could be exploited as a prodrug activation strategy to improve aqueous solubility. This type of prodrug may be applicable to other structures with spatially arranged hydroxyl amide to improve their aqueous solubility.


MedChemComm | 2013

Discovery of a Potent Anti-tumor Agent through Regioselective Mono-N-acylation of 7H-Pyrrolo[3,2-f]quinazoline-1,3-diamine.

Jingjin Chen; Alina Kassenbrock; Bingbing X. Li; Xiangshu Xiao

7H-Pyrrolo[3,2-f]quinazoline-1,3-diamine (1) is a privileged chemical scaffold with significant biological activities. However, the currently accessible chemical space derived from 1 is rather limited. Here we expanded the chemical space related to 1 by developing efficient methods for regioselective monoacylation at N1 , N3 and N7 , respectively. With this novel methodology, a focused library of mono-N-acylated pyrroloquinazoline-1,3-diamines were prepared and screened for anti-breast cancer activity. The structure-activity relationship (SAR) results showed that N3 -acylated compounds were in general more potent than N1 -acylated compounds while N7 -acylation significantly reduced their solubility. Among the compounds evaluated, 7f possessed 8-fold more potent activity than 1 in MDA-MB-468 cells. More importantly, 7f was not toxic to normal human cells. These results suggest that 7f is a novel compound as a potential anti-breast cancer agent without harming normal cells.


Scientific Reports | 2016

Systemic Inhibition of CREB is Well-tolerated in vivo

Bingbing X. Li; Ryan T. Gardner; Changhui Xue; David Z. Qian; Fuchun Xie; George Thomas; Steven C. Kazmierczak; Beth A. Habecker; Xiangshu Xiao

cAMP-response element binding protein (CREB) is a nuclear transcription factor activated by multiple extracellular signals including growth factors and hormones. These extracellular cues activate CREB through phosphorylation at Ser133 by various protein serine/threonine kinases. Once phosphorylated, it promotes its association with transcription coactivators CREB-binding protein (CBP) and its paralog p300 to activate CREB-dependent gene transcription. Tumor tissues of different origins have been shown to present overexpression and/or overactivation of CREB, indicating CREB as a potential cancer drug target. We previously identified 666-15 as a potent inhibitor of CREB with efficacious anti-cancer activity both in vitro and in vivo. Herein, we investigated the specificity of 666-15 and evaluated its potential in vivo toxicity. We found that 666-15 was fairly selective in inhibiting CREB. 666-15 was also found to be readily bioavailable to achieve pharmacologically relevant concentrations for CREB inhibition. Furthermore, the mice treated with 666-15 showed no evidence of changes in body weight, complete blood count, blood chemistry profile, cardiac contractility and tissue histologies from liver, kidney and heart. For the first time, these results demonstrate that pharmacological inhibition of CREB is well-tolerated in vivo and indicate that such inhibitors should be promising cancer therapeutics.


MedChemComm | 2015

The chemistry and pharmacology of privileged pyrroloquinazolines

Bo Chao; Bingbing X. Li; Xiangshu Xiao

The advent of next-generation sequencing (NGS) technology has plummeted the cost of whole genome sequencing, which has provided a long list of putative drug targets for a variety of diseases ranging from infectious diseases to cancers. The majority of these drug targets are still awaiting high-quality small molecule ligands to validate their therapeutic potential and track their druggability. Screening compound libraries based on privileged scaffolds is an efficient strategy to identify potential ligands to distinct biological targets. 7H-Pyrrolo[3,2-f]quinazoline (PQZ) is a potential privileged heterocyclic scaffold with diverse pharmacological properties. A number of biological targets have been identified for different derivatives of PQZ. This review summarized the synthetic strategies to access the chemical space associated with PQZ and discussed their unique biological profiles.

Collaboration


Dive into the Bingbing X. Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge