Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingdi Yan is active.

Publication


Featured researches published by Bingdi Yan.


Oncology Reports | 2016

ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells

Shaomin Shi; Ping Tan; Bingdi Yan; Rong Gao; Jianjun Zhao; Jing Wang; Jia Guo; Ning Li; Zhongsen Ma

Cisplatin [cis-diamminedichloroplatinum II (CDDP)] is one of the most classical and effective chemotherapeutic drugs for the treatment of cancers including lung cancer. However, the presence of cisplatin resistance in cancer lowers its curative effect and limits its usage in the clinic. The aim of the present study was to investigate the underlying mechanisms of cisplatin resistance in lung cancer involving endoplasmic reticulum (ER) stress and autophagy. In the present study, we detected the effect of cisplatin on cell viability, ER stress and autophagy in lung cancer cell lines A549 and H460. We also tested the effects of ER stress and autophagy on apoptosis induced by cisplatin. The results showed that cisplatin induced apoptosis, ER stress and autophagy in lung cancer cell lines. In addition, the inhibition of ER stress by 4-phenylbutyric acid (4-PBA) or tauroursodeoxycholic acid sodium (TUDC) enhanced cisplatin-induced apoptosis in the human lung cancer cells. Meanwhile, combination treatment with the autophagic inhibitor 3-methyladenine (3-MA) or chloroquine (CQ) further increased the apoptosis induced by cisplatin in the human lung cancer cells. The present study provides a novel treatment strategy - cisplatin in combination with an autophagic inhibitor or an ER stress inhibitor leads to increased apoptosis in human lung cancer cells.


Internal Medicine | 2015

Multi-organ Involvement of Sweet's Syndrome: A Case Report and Literature Review

Bo Li; Zhongsen Ma; Xuesong Xu; Jinzhi Yin; Xiuli Wang; Jin Ren; Songyan Wang; Junling Yang; Qinghua Zhang; Jinyan Yu; Bingdi Yan

The hallmark of Sweets syndrome (SS) is the infiltration of mature neutrophils in the upper dermis. We herein report a case of SS with multi-organ involvement. A 32-year-old man presented with fever, anemia and dyspnea. He was given antibiotics, without any improvements. Later, a number of erythematous lesions appeared, accompanied by deteriorating respiratory and cardiovascular functions. A diagnosis of SS was confirmed on a skin biopsy, and the patient was given corticosteroids, the dose of which was reduced after one month. The organ function subsequently deteriorated, and he ultimately died of multi-organ failure. Early recognition of SS with multi-organ involvement is important in patients with SS.


Molecular Medicine Reports | 2016

Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-κB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation

Jun Ren; Shan-shan Meng; Bingdi Yan; Jinyan Yu; Jing Liu

Protectin D1 (PD1) is a bioactive product generated from docosahexaenoic acid, which may exert anti-inflammatory effects in various inflammatory diseases. However, the underlying molecular mechanism of its anti‑inflammatory activity on concanavalin A (Con A)-induced hepatitis remains unknown. The aim of the present study was to investigate the protective effects of PD1 against Con A‑induced liver injury and the underlying mechanisms via intravenous injection of PD1 prior to Con A administration. C57BL/6 mice were randomly divided into four experimental groups as follows: Control group, Con A group (30 mg/kg), 20 µg/kg PD1 + Con A (30 mg/kg) group and 10 µg/kg PD1 + Con A (30 mg/kg) group. PD1 pretreatment was demonstrated to significantly inhibit elevated plasma aminotransferase levels, high mobility group box 1 and liver necrosis, which were observed in Con A‑induced hepatitis. Furthermore, compared with the Con A group, PD1 pretreatment prevented the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α, interferon‑γ and interleukin‑2, ‑1β and ‑6. In addition, pretreatment with PD1 markedly downregulated cluster of differentiation (CD)4+, CD8+ and natural killer T (NKT) cell infiltration in the liver. PD1 pretreatment was observed to suppress the messenger RNA and protein expression levels of NLR family, pyrin domain containing 3 and Toll‑like receptor (TLR) 4 in liver tissue samples. Further data indicated that PD1 pretreatment inhibited the activation of the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) signaling pathway and chemokine (C‑X3‑C motif) ligand 1 (CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) axis by preventing phosphorylation of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α and NF‑κB in Con A‑induced liver injury. Therefore, these results suggest that PD1 administration protects mice against Con A‑induced liver injury via inhibition of various inflammatory cytokines and, in part, by suppressing CD4+, CD8+ and NKT cell infiltration in the liver and the NF‑κB‑activated CX3CL1/CX3CR1 signaling pathway. The beneficial effect of PD1 may be associated with the inhibition of TLR4 expression and the downregulation of NF‑κB activation. In conclusion, PD1 appears to be a potential natural bioproduct, and provide a promising strategy, for the prevention of hepatic injury in patients with chronic or acute liver disease.


Asian Pacific Journal of Cancer Prevention | 2012

Knockdown of HMGN5 Expression by RNA Interference Induces Cell Cycle Arrest in Human Lung Cancer Cells

Peng Chen; Xiuli Wang; Zhongsen Ma; Zhong Xu; Bo Jia; Jin Ren; Yuxin Hu; Qinghua Zhang; Bingdi Yan; Qing-Zhu Yan; Yanlei Li; Zhen Li; Jinyan Yu; Rong Gao; Na Fan; Bo Li; Junling Yang

HMGN5 is a typical member of the HMGN (high mobility group nucleosome-binding protein) family which may function as a nucleosomal binding and transcriptional activating protein. Overexpression of HMGN5 has been observed in several human tumors but its role in tumorigenesis has not been fully clarified. To investigate its significance for human lung cancer progression, we successfully constructed a shRNA expression lentiviral vector in which sense and antisense sequences targeting the human HMGN5 were linked with a 9-nucleotide loop. Inhibitory effects of siRNA on endogenous HMGN5 gene expression and protein synthesis were demonstrated via real-time RT-PCR and western blotting. We found HMGN5 silencing to significantly inhibit A549 and H1299 cell proliferation assessed by MTT, BrdU incorporation and colony formation assays. Furthermore, flow cytometry analysis showed that specific knockdown of HMGN5 slowed down the cell cycle at the G0/G1 phase and decreased the populations of A549 and H1299 cells at the S and G2/M phases. Taken together, these results suggest that HMGN5 is directly involved in regulation cell proliferation in A549 and H1299 cells by influencing signaling pathways involved in cell cycle progression. Thus, our finding suggests that targeting HMGN5 may be an effective strategy for human lung cancer treatment.


Molecular Medicine Reports | 2017

Sulforaphane prevents bleomycin‑induced pulmonary fibrosis in mice by inhibiting oxidative stress via nuclear factor erythroid 2‑related factor‑2 activation

Bingdi Yan; Zhongsen Ma; Shaomin Shi; Yuxin Hu; Gao Rong; Junling Yang

Lung fibrosis is associated with inflammation, apoptosis and oxidative damage. The transcription factor nuclear factor erythroid 2-related factor-2 (Nrf2) prevents damage to cells from oxidative stress by regulating the expression of antioxidant proteins. Sulforaphane (SFN), an Nrf2 activator, additionally regulates excessive oxidative stress by promoting the expression of endogenous antioxidants. The present study investigated if SFN protects against lung injury induced by bleomycin (BLM). The secondary aim of the present study was to assess if this protection mechanism involves upregulation of Nrf2 and its downstream antioxidants. Pulmonary fibrosis was induced in C57/BL6 mice by intratracheal instillation of BLM. BLM and age-matched control mice were treated with or without a daily dose of 0.5 mg/kg SFN until sacrifice. On days 7 and 28, mice were assessed for induction of apoptosis, inflammation, fibrosis, oxidative damage and Nrf2 expression in the lungs. The lungs were investigated with histological techniques including haematoxylin and eosin staining, Massons trichrome staining and terminal deoxynucleotidyl transferase UTP nick end labeling. Inflammatory, fibrotic and apoptotic processes were confirmed by western blot analysis for interleukin-1β, tumor necrosis factor-α, transforming growth factor-β and caspase-3 protein expressions. Furthermore, protein levels of 3-nitro-tyrosine, 4-hydroxynonenal, superoxide dismutase 1 and catalase were investigated by western blot analysis. It was demonstrated that pulmonary fibrosis induced by BLM significantly increased apoptosis, inflammation, fibrosis and oxidative stress in the lungs at days 7 and 28. Notably, SFN treatment significantly attenuated the infiltration of the inflammatory cells, collagen accumulation, epithelial cell apoptosis and oxidative stress in the lungs. In addition, SFN treatment increased expression of the Nrf2 gene and its downstream targets. In conclusion, these results suggested that SFN treatment of pulmonary fibrosis mouse models may attenuate alveolitis, fibrosis, apoptosis and lung oxidative stress by increasing the expression of antioxidant enzymes, including NAPDH quinone oxidoreductase, heme oxygenase-1, superoxide dismutase and catalase, via upregulation of Nrf2 gene expression. Thus, the results from the present study may facilitate the development of therapies for BLM-toxicity and pulmonary fibrosis.


Experimental Diabetes Research | 2017

Antioxidative Effects of Natural Products on Diabetic Cardiomyopathy

Bingdi Yan; Jin Ren; Qinghua Zhang; Rong Gao; Fenglian Zhao; Junduo Wu; Junling Yang

Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes and results in high mortality. It is therefore imperative to develop novel therapeutics for the prevention or inhibition of the progression of DCM. Oxidative stress is a key mechanism by which diabetes induces DCM. Hence, targeting of oxidative stress-related processes in DCM could be a promising therapeutic strategy. To date, a number of studies have shown beneficial effects of several natural products on the attenuation of DCM via an antioxidative mechanism of action. The aim of the present review is to provide a comprehensive and concise overview of the previously reported antioxidant natural products in the inhibition of DCM progression. Clinical trials of the antioxidative natural products in the management of DCM are included. In addition, discussion and perspectives are further provided in the present review.


Respiratory Research | 2016

Erratum to: Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells

Shan-shan Meng; Rong Gao; Bingdi Yan; Jin Ren; Fei Wu; Peng Chen; Jie Zhang; Li-fang Wang; Yuan-ming Xiao; Jing Liu

Background Maternal allergic disease history and impaired regulatory T-cells (Tregs) are critical risk factors for allergy development in children. However, the mechanisms that underlie these risk factors remain poorly defined. Therefore, the aim of this study was to assess whether maternal allergies affect the Tregs of offspring and lead to allergy development in childhood.


Open Biology | 2018

IDH1 mutation promotes lung cancer cell proliferation through methylation of Fibulin-5

Bingdi Yan; Yanbing Hu; Yanjun Wang

Mutation in isocitrate dehydrogenase (IDH) leads to an aberrant function of the enzyme, leading to the production of hydroxyglutarate, as well as changes in cellular metabolism, DNA methylation and histone modification. Previous studies uncovered mutations in IDH1 in several malignancies, with the most frequent mutation being IDH1 R132H. It has been demonstrated that IDH1 expression is induced in non-small-cell lung cancer (NSCLC). However, the contribution of IDH1 mutation in the malignant transformation and development of NSCLC is unclear. In our study, we show that IDH1 R132H enhanced the migration and proliferation of NSCLC cells. Moreover, IDH1 R132H was a crucial modulator of 2-hydroxyglutarate, whose production from cells with IDH1 mutation promoted the binding of DNA-methyltransferase 1 (DNMT1) to the Fibulin-5 promoter, leading to its methylation. As a result, Fibulin-5 silencing in cells with IDH1 mutation enhanced the migration and proliferation of NSCLC cells. We show that the IDH1 mutation was present in tissues sampled from patients with NSCLC, which was reversely linked to Fibulin-5 expression. In this study, we suggest an innovative model for IDH1 R132H/Fibulin-5 pathway, which could throw light upon the activity of IDH1 R132H in NSCLC.


Clinical and Translational Allergy | 2018

Maternal exposure to farming environment protects offspring against allergic diseases by modulating the neonatal TLR-Tregs-Th axis

Jinyan Yu; Xiaoqiu Liu; Yanlei Li; Shanshan Meng; Fei Wu; Bingdi Yan; Yanjun Xue; Junling Yang; Jing Liu

BackgroundAs the development of urbanization in China, the morbidity of allergic disease rise up prominently even in children, which may be partially associated with the excessively clean environment. It has been reported that common microorganism in rural environment shows protective effects on allergic disease by modulating TLRs-Tregs/Th cell axis. But the mechanism of this protection still needs to be elucidated in detail. We investigated the effects of maternal exposure to farming environment on the neonatal innate immune system, especially on the TLR-Treg-Th (Th1, Th2, Th9, and Th17) axis, in the Jilin province of China.MethodsEighty-four non-farming and 42 farming pregnant women were recruited. Endotoxins and glucans in dust from the living rooms of the pregnant mothers were measured. Cord blood mononuclear cells were challenged with phytohemagglutinin, lipopolysaccharide, or peptidoglycan. Proliferative response of lymphocyte was measured by 3H-TdR incorporation methods, CD4 + CD25 + FOXP3 + T cells percentage was assessed with flow cytometry, Tregs specific genes (FOXP3, LAG3, GITR, CTLA-4 and TGF-β) and TLR2, TLR4 genes expression were detected by RT-PCR, specific cytokines of Th1, Th2, Th9, Th17 and Tregs were measured with flow cytometer, suppressive capacity of Tregs was tested by culturing with effector cells in vitro, and TLR2/4 gene polymorphism was detected.ResultsHigher endotoxin content was observed in the living rooms of the farming mothers. Compared with that in the non-farming group, in farming neonatal CBMCs, lymphocyte proliferation declined; the IFN-γ/IL-13 ratio increased; and the quantity of Tregs and gene expression of FOXP3, GITR, CTLA4 and TLR2 increased significantly (P < 0.05). Isolated Tregs suppressed the proliferation of effector T cells and IL-13 production more strongly in vitro (P = 0.04, 0.03, respectively), and the TLR2 polymorphism affected FOXP3 expression and IFN-γ and IL-13 production.ConclusionsMaternal exposure to farming affected the quantity and function of neonatal Tregs upon stimulation with PPG and LPS, which partly contributed to reducing the risk for allergic diseases in the offspring. The results of our study will lay the theoretical foundation for allergic disease prevention in early life.


Chinese Medical Journal | 2018

Pulmonary Multiple Nodules: Benign or Malignant?

Junling Yang; Jing Liu; Xiaoqiu Liu; Bingdi Yan; Yanjun Xue; Xiao-Xiao Han; Han Li; Li Ma; Jie Zhang

To the Editor: A case of primary thyroid fibrosarcoma with pulmonary metastasis is very rare. It is difficult to be diagnosed especially when pathological manifestation is atypical and early pulmonary metastasis coexists with some benign lesions. Here, we report that a case of thyroid fibrosarcoma with pulmonary and subcutaneous fat metastasis coexisting with solitary pulmonary sclerosing hemangioma (PSH) in lung. This report may improve better understanding of differential diagnosis of benign and malignant lesions primary thyroid fibrosarcoma in the lung.

Collaboration


Dive into the Bingdi Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge