Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Binglian Zheng is active.

Publication


Featured researches published by Binglian Zheng.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis

Bin Yu; Liu Bi; Binglian Zheng; Lijuan Ji; David Chevalier; Manu Agarwal; Wan-Xiang Li; Thierry Lagrange; John C. Walker; Xuemei Chen

Proteins containing the forkhead-associated domain (FHA) are known to act in biological processes such as DNA damage repair, protein degradation, and signal transduction. Here we report that DAWDLE (DDL), an FHA domain-containing protein in Arabidopsis, acts in the biogenesis of miRNAs and endogenous siRNAs. Unlike mutants of genes known to participate in the processing of miRNA precursors, such as dcl1, hyponastic leaves1, and serrate, ddl mutants show reduced levels of pri-miRNAs as well as mature miRNAs. Promoter activity of MIR genes, however, is not affected by ddl mutations. DDL is an RNA binding protein and is able to interact with DCL1. In addition, we found that SNIP1, the human homolog of DDL, is involved in miRNA biogenesis and interacts with Drosha. Therefore, we uncovered an evolutionarily conserved factor in miRNA biogenesis. We propose that DDL participates in miRNA biogenesis by facilitating DCL1 to access or recognize pri-miRNAs.


Genes & Development | 2009

Intergenic transcription by RNA Polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis

Binglian Zheng; Zhengming Wang; Shengben Li; Bin Yu; Jinyuan Liu; Xuemei Chen

Intergenic transcription by RNA Polymerase II (Pol II) is widespread in plant and animal genomes, but the functions of intergenic transcription or the resulting noncoding transcripts are poorly understood. Here, we show that Arabidopsis Pol II is indispensable for endogenous siRNA-mediated transcriptional gene silencing (TGS) at intergenic low-copy-number loci, despite the presence of two other polymerases-Pol IV and Pol V-that specialize in TGS through siRNAs. We show that Pol II produces noncoding scaffold transcripts that originate outside of heterochromatic, siRNA-generating loci. Through these transcripts and physical interactions with the siRNA effector protein ARGONAUTE4 (AGO4), Pol II recruits AGO4/siRNAs to homologous loci to result in TGS. Meanwhile, Pol II transcription also recruits Pol IV and Pol V to different locations at heterochromatic loci to promote siRNA biogenesis and siRNA-mediated TGS, respectively. This study establishes that intergenic transcription by Pol II is required for siRNA-mediated TGS, and reveals an intricate collaboration and division of labor among the three polymerases in gene silencing.


The EMBO Journal | 2011

The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana

Yun Ju Kim; Binglian Zheng; Yu Yu; So Youn Won; Beixin Mo; Xuemei Chen

Mediator is a conserved multi‐subunit complex known to promote the transcription of protein‐coding genes by RNA polymerase II (Pol II) in eukaryotes. It has been increasingly realized that Pol II transcribes a large number of intergenic loci to generate noncoding RNAs, but the role of Mediator in Pol II‐mediated noncoding RNA production has been largely unexplored. The role of Mediator in noncoding RNA production in plants is particularly intriguing given that plants have evolved from Pol II two additional polymerases, Pol IV and Pol V, to specialize in noncoding RNA production and transcriptional gene silencing at heterochromatic loci. Here, we show that Mediator is required for microRNA (miRNA) biogenesis by recruiting Pol II to promoters of miRNA genes. We also show that several well‐characterized heterochromatic loci are de‐repressed in Mediator mutants and that Mediator promotes Pol II‐mediated production of long noncoding scaffold RNAs, which serve to recruit Pol V to these loci. This study expands the function of Mediator to include Pol II‐mediated intergenic transcription and implicates a role of Mediator in genome stability.


PLOS Genetics | 2011

ARGONAUTE10 and ARGONAUTE1 Regulate the Termination of Floral Stem Cells Through Two MicroRNAs in Arabidopsis

Lijuan Ji; Xigang Liu; Jun Yan; Wenming Wang; Rae Eden Yumul; Yun Ju Kim; Thanh Theresa Dinh; Jun Liu; Xia Cui; Binglian Zheng; Manu Agarwal; Chunyan Liu; Xiaofeng Cao; Guiliang Tang; Xuemei Chen

Stem cells are crucial in morphogenesis in plants and animals. Much is known about the mechanisms that maintain stem cell fates or trigger their terminal differentiation. However, little is known about how developmental time impacts stem cell fates. Using Arabidopsis floral stem cells as a model, we show that stem cells can undergo precise temporal regulation governed by mechanisms that are distinct from, but integrated with, those that specify cell fates. We show that two microRNAs, miR172 and miR165/166, through targeting APETALA2 and type III homeodomain-leucine zipper (HD-Zip) genes, respectively, regulate the temporal program of floral stem cells. In particular, we reveal a role of the type III HD-Zip genes, previously known to specify lateral organ polarity, in stem cell termination. Both reduction in HD-Zip expression by over-expression of miR165/166 and mis-expression of HD-Zip genes by rendering them resistant to miR165/166 lead to prolonged floral stem cell activity, indicating that the expression of HD-Zip genes needs to be precisely controlled to achieve floral stem cell termination. We also show that both the ubiquitously expressed ARGONAUTE1 (AGO1) gene and its homolog AGO10, which exhibits highly restricted spatial expression patterns, are required to maintain the correct temporal program of floral stem cells. We provide evidence that AGO10, like AGO1, associates with miR172 and miR165/166 in vivo and exhibits “slicer” activity in vitro. Despite the common biological functions and similar biochemical activities, AGO1 and AGO10 exert different effects on miR165/166 in vivo. This work establishes a network of microRNAs and transcription factors governing the temporal program of floral stem cells and sheds light on the relationships among different AGO genes, which tend to exist in gene families in multicellular organisms.


The Plant Cell | 2010

Arabidopsis Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth

Yan Deng; Haili Dong; Jinye Mu; Bo Ren; Binglian Zheng; Zhendong Ji; Wei-Cai Yang; Yan Liang; Jianru Zuo

The Arabidopsis histidine kinase CKI1 is essential for female gametogenesis and is able to activate cytokinin signaling by unknown mechanisms. This study shows that CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate downstream signaling events in a cytokinin receptor-independent manner and demonstrates that CKI1-AHP signaling is essential for plant growth and development. Cytokinin signaling is mediated by a multiple-step phosphorelay. Key components of the phosphorelay consist of the histidine kinase (HK)-type receptors, histidine phosphotransfer proteins (HP), and response regulators (RRs). Whereas overexpression of a nonreceptor-type HK gene CYTOKININ-INDEPENDENT1 (CKI1) activates cytokinin signaling by an unknown mechanism, mutations in CKI1 cause female gametophytic lethality. However, the function of CKI1 in cytokinin signaling remains unclear. Here, we characterize a mutant allele, cki1-8, that can be transmitted through female gametophytes with low frequency (∼0.17%). We have recovered viable homozygous cki1-8 mutant plants that grow larger than wild-type plants, show defective megagametogenesis and rarely set enlarged seeds. We found that CKI1 acts upstream of AHP (Arabidopsis HP) genes, independently of cytokinin receptor genes. Consistently, an ahp1,2-2,3,4,5 quintuple mutant, which contains an ahp2-2 null mutant allele, exhibits severe defects in megagametogenesis, with a transmission efficiency of <3.45% through female gametophytes. Rarely recovered ahp1,2-2,3,4,5 quintuple mutants are seedling lethal. Finally, the female gametophytic lethal phenotype of cki1-5 (a null mutant) can be partially rescued by IPT8 or ARR1 (a type-B Arabidopsis RR) driven by a CKI1 promoter. These results define a genetic pathway consisting of CKI1, AHPs, and type-B ARRs in the regulation of female gametophyte development and vegetative growth.


Current Opinion in Plant Biology | 2011

Dynamics of histone H3 lysine 27 trimethylation in plant development

Binglian Zheng; Xuemei Chen

The development of multicellular organisms is governed partly by temporally and spatially controlled gene expression. DNA methylation, covalent modifications of histones, and the use of histone variants are the major epigenetic mechanisms governing gene expression in plant development. In this review, we zoom in onto histone H3 lysine 27 trimethylation (H3K27me3), a repressive mark that plays a crucial role in the dynamic regulation of gene expression in plant development, to discuss recent advances as well as outstanding questions in the deposition, recognition, and removal of the mark and the impacts of these molecular processes on plant development.


The Plant Cell | 2011

The Anaphase-Promoting Complex Is a Dual Integrator That Regulates Both MicroRNA-Mediated Transcriptional Regulation of Cyclin B1 and Degradation of Cyclin B1 during Arabidopsis Male Gametophyte Development

Binglian Zheng; Xuemei Chen; Sheila McCormick

This study shows that, in addition to its known role in protein degradation, the anaphase-promoting complex also regulates transcription of a cell cycle gene, Cyclin B1, and that this regulation, which is mediated by microRNA, is important for pollen development. The anaphase-promoting complex/cyclosome (APC/C), an essential ubiquitin protein ligase, regulates mitotic progression and exit by enhancing degradation of cell cycle regulatory proteins, such as CYCB1;1, whose transcripts are upregulated by DUO POLLEN1 (DUO1). DUO1 is required for cell division in male gametophytes and is a target of microRNA 159 (miR159) in Arabidopsis thaliana. Whether APC/C is required for DUO1-dependent CYCB1;1 regulation is unknown. Mutants in both APC8 and APC13 had pleiotrophic phenotypes resembling those of mutants affecting microRNA biogenesis. We show that these apc/c mutants had reduced miR159 levels and increased DUO1 and CYCB1;1 transcript levels and that APC/C is required to recruit RNA polymerase II to MIR159 promoters. Thus, in addition to its role in degrading CYCB1;1, APC/C stimulates production of miR159, which downregulates DUO1 expression, leading to reduced CYCB1;1 transcription. Both MIR159 and APC8–yellow fluorescent protein accumulated in unicellular microspores and bicellular pollen but decreased in tricellular pollen, suggesting that spatial and temporal regulation of miR159 by APC/C ensures mitotic progression. Consistent with this, the percentage of mature pollen with no or single sperm-like cells increased in apc/c mutants and plants overexpressing APC8 partially mimicked the duo1 phenotype. Thus, APC/C is an integrator that regulates both microRNA-mediated transcriptional regulation of CYCB1;1 and degradation of CYCB1;1.


BMC Bioinformatics | 2009

Computational prediction of novel non-coding RNAs in Arabidopsis thaliana.

Dandan Song; Yang Yang; Bin Yu; Binglian Zheng; Zhidong Deng; Bao-Liang Lu; Xuemei Chen; Tao Jiang

BackgroundNon-coding RNA (ncRNA) genes do not encode proteins but produce functional RNA molecules that play crucial roles in many key biological processes. Recent genome-wide transcriptional profiling studies using tiling arrays in organisms such as human and Arabidopsis have revealed a great number of transcripts, a large portion of which have little or no capability to encode proteins. This unexpected finding suggests that the currently known repertoire of ncRNAs may only represent a small fraction of ncRNAs of the organisms. Thus, efficient and effective prediction of ncRNAs has become an important task in bioinformatics in recent years. Among the available computational methods, the comparative genomic approach seems to be the most powerful to detect ncRNAs. The recent completion of the sequencing of several major plant genomes has made the approach possible for plants.ResultsWe have developed a pipeline to predict novel ncRNAs in the Arabidopsis (Arabidopsis thaliana) genome. It starts by comparing the expressed intergenic regions of Arabidopsis as provided in two whole-genome high-density oligo-probe arrays from the literature with the intergenic nucleotide sequences of all completely sequenced plant genomes including rice (Oryza sativa), poplar (Populus trichocarpa), grape (Vitis vinifera), and papaya (Carica papaya). By using multiple sequence alignment, a popular ncRNA prediction program (RNAz), wet-bench experimental validation, protein-coding potential analysis, and stringent screening against various ncRNA databases, the pipeline resulted in 16 families of novel ncRNAs (with a total of 21 ncRNAs).ConclusionIn this paper, we undertake a genome-wide search for novel ncRNAs in the genome of Arabidopsis by a comparative genomics approach. The identified novel ncRNAs are evolutionarily conserved between Arabidopsis and other recently sequenced plants, and may conduct interesting novel biological functions.


PLOS Genetics | 2014

An ARID Domain-Containing Protein within Nuclear Bodies Is Required for Sperm Cell Formation in Arabidopsis thaliana

Binglian Zheng; Hui He; Yanhua Zheng; Wenye Wu; Sheila McCormick

In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain)-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation.


Silence | 2012

Development of a luciferase-based reporter of transcriptional gene silencing that enables bidirectional mutant screening in Arabidopsis thaliana

So Youn Won; Shengben Li; Binglian Zheng; Yuanyuan Zhao; Dongming Li; Xin Zhao; Huilan Yi; Lei Gao; Thanh Theresa Dinh; Xuemei Chen

BackgroundCytosine methylation is an important chromatin modification that maintains genome integrity and regulates gene expression through transcriptional gene silencing. Major players in de novo methylation guided by siRNAs (known as RNA-directed DNA methylation, or RdDM), maintenance methylation, and active demethylation have been identified in Arabidopsis. However, active demethylation only occurs at a subset of RdDM loci, raising the question of how the homeostasis of DNA methylation is achieved at most RdDM loci. To identify factors that regulate the levels of cytosine methylation, we aimed to establish a transgenic reporter system that allows for forward genetic screens in Arabidopsis.ResultsWe introduced a dual 35 S promoter (d35S) driven luciferase reporter, LUCH, into Arabidopsis and isolated a line with a moderate level of luciferase activity. LUCH produced transgene-specific 24 nucleotide siRNAs and its d35S contained methylated cytosine in CG, CHG and CHH contexts. Treatment of the transgenic line with an inhibitor of cytosine methylation de-repressed luciferase activity. Mutations in several components of the RdDM pathway but not the maintenance methylation genes resulted in reduced d35S methylation, especially CHH methylation, and de-repression of luciferase activity. A mutation in MOM1, which is known to cooperate with RdDM to silence transposons, reduced d35S DNA methylation and de-repressed LUCH expression. A mutation in ROS1, a cytosine demethylation enzyme, increased d35S methylation and reduced LUCH expression.ConclusionWe developed a luciferase-based reporter, LUCH, which reports both DNA methylation directed by small RNAs and active demethylation by ROS1 in Arabidopsis. The moderate basal level of LUCH expression allows for bi-directional genetic screens that dissect the mechanisms of DNA methylation as well as demethylation.

Collaboration


Dive into the Binglian Zheng's collaboration.

Top Co-Authors

Avatar

Xuemei Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Jianru Zuo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bin Yu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lijuan Ji

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi-Wen Niu

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Shengben Li

University of California

View shared research outputs
Top Co-Authors

Avatar

So Youn Won

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge