Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingqian Liu is active.

Publication


Featured researches published by Bingqian Liu.


Investigative Ophthalmology & Visual Science | 2008

A Rabbit Dry Eye Model Induced by Topical Medication of a Preservative Benzalkonium Chloride

Cuiju Xiong; Dong Chen; Jingbo Liu; Bingqian Liu; Naiyang Li; Yang Zhou; Xuanwei Liang; Ping Ma; Chengtian Ye; Jian Ge; Zhichong Wang

PURPOSE To establish a rabbit dry eye model with topical medication of the ocular preparation preservative benzalkonium chloride (BAC). METHODS Sixteen white rabbits were used. One eye of each rabbit was chosen randomly for topical administration of 0.1% BAC twice daily for 14 days. The other untreated eyes served as controls. Schirmer test, fluorescein, and rose bengal staining were performed before and after BAC treatment on days 3, 5, 7, and 14. Conjunctiva impression cytology specimens were collected on days 0, 7, and 14. The rabbits were killed after day 14. Immunofluorescence staining was performed to detect mucin-5 subtype AC (MUC5AC) on conjunctival cryosections. Cornea and conjunctiva structures were evaluated by light and electron microscopy. RESULTS Compared with untreated controls, BAC-treated eyes showed significant decreases in Schirmer scores (P = 0.01) and increases in fluorescein scores (P < 0.001) on days 5, 7, and 14. A significant increase in rose bengal scores was noticed as early as day 3 (P = 0.001). Decreases in goblet cell density occurred on days 7 and 14 (P = 0.001). Decreased MUC5AC and histopathologic and ultrastructural disorders of the cornea and conjunctiva were also observed in the BAC group. CONCLUSIONS These findings demonstrated that an ophthalmic preservative, benzalkonium chloride, induced a dry eye syndrome in rabbits with damage to the cornea and conjunctiva, decreased aqueous tear basal secretion, goblet cell loss, and MUC5AC deficiency. This rabbit model was consistent with human dry eye syndrome in both aqueous tear and mucin deficiency and may be appropriate for studying dry eye syndrome.


Investigative Ophthalmology & Visual Science | 2010

Generation of Retinal Ganglion–like Cells from Reprogrammed Mouse Fibroblasts

Mengfei Chen; Qin Chen; Xuerong Sun; Wenjuan Shen; Bingqian Liu; Xiufeng Zhong; Yunxia Leng; Chunmei Li; Weizhong Zhang; Fang Chai; Bing Huang; Qianying Gao; Andy Peng Xiang; Yehong Zhuo; Jian Ge

PURPOSE Somatic cells can be reprogrammed into an embryonic stem cell-like pluripotent state by Oct-3/4, Sox2, c-Myc, and Klf4. Sox2 as an essential reprogramming factor also contributes to the development of the eye and the retina. This study was conducted to determine whether induced pluripotent stem (iPS) cells express retinal progenitor cell (RPC)-related genes and whether iPS cells can directly differentiate into retinal ganglion cells (RGCs). METHODS Mouse iPS cells were induced by the ectopically expressed four factors in tail-tip fibroblasts (TTFs). The expression of RPC-related genes in iPS cells was analyzed by RT-PCR and immunofluorescence. iPS cells were induced to differentiate into RGCs by the addition of Dkk1 + Noggin (DN) + DAPT and overexpression of Math5. iPS-derived retinal ganglion (RG)-like cells were injected into the retina, and the eyes were analyzed by immunohistochemistry. RESULTS iPS cells inherently express RPC-related genes such as Pax6, Rx, Otx2, Lhx2, and Nestin. Overexpression of Math5 and addition of DN can directly differentiate iPS into retinal ganglion-like cells. These iPS-derived RG-like cells display long synapses and gene expression patterns, including Math5, Brn3b, Islet-1, and Thy1.2. Furthermore, inhibiting Hes1 by DAPT increases the expression of RGC marker genes. In addition, iPS-derived RG-like cells were able to survive but were unable to be integrated into the normal retina after transplantation. CONCLUSIONS The four factor iPS cell inherently expressed RPC-related genes, and the iPS cell could be further turned into RG-like cells by the regulation of transcription factor expression. These findings demonstrate that iPS cells are valuable for regeneration research into retinal degeneration diseases.


PLOS ONE | 2012

Serum Starvation Induced Cell Cycle Synchronization Facilitates Human Somatic Cells Reprogramming

Mengfei Chen; Jingjing Huang; Xuejiao Yang; Bingqian Liu; Weizhong Zhang; Li Huang; Fei Deng; Jian Ma; Yujing Bai; Rong Lu; Bing Huang; Qianying Gao; Yehong Zhuo; Jian Ge

Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15–20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells.


Investigative Ophthalmology & Visual Science | 2011

Mitochondria-Targeted Peptide MTP-131 Alleviates Mitochondrial Dysfunction and Oxidative Damage in Human Trabecular Meshwork Cells

Min Chen; Bingqian Liu; Qianying Gao; Zhuo Yh; Jian Ge

PURPOSE To investigate the antioxidative ability of a novel mitochondria-targeted peptide MTP-131 in immortalized human trabecular meshwork (iHTM) and glaucomatous human trabecular meshwork (GTM(3)) cell lines. METHODS Cultured iHTM and GTM(3) cells were pretreated with MTP-131 for 1 hour, and sustained oxidative stress was induced by subjecting TM cells to 200 μM hydrogen peroxide (H(2)O(2)) for 24 hours. Untreated cells and cells incubated with H(2)O(2) alone were used as controls. Lactate dehydrogenase (LDH) assay was used to determine cell viability. Changes of mitochondrial membrane potential (ΔΨm) and generation of intracellular reactive oxygen species (ROS) were analyzed by flow cytometry and confocal microscopy. Activation of caspase 3 was quantified by Western blotting, and apoptosis was measured by flow cytometry. Release of cytochrome c and changes in cytoskeleton were analyzed by confocal microscopy. Data were analyzed with commercial data analysis software and P < 0.05 was considered to be statistically significant. RESULTS In both iHTM and GTM(3) cells, decrease of ΔΨm and elevation of intracellular ROS were detected after sustained oxidative stress induced by H(2)O(2). When cells were pretreated with MTP-131, the H(2)O(2)-induced mitochondrial depolarization was prevented; intracellular ROS, LDH release, and apoptosis were significantly decreased; release of cytochrome c from mitochondria to cytoplasm and activation of caspase 3 were inhibited. In addition, cytoskeleton changes caused by H(2)O(2) were also alleviated by MTP-131. CONCLUSIONS Mitochondria-targeted peptide MTP-131 could prevent both iHTM and GTM(3) cells from sustained oxidative stress induced by H(2)O(2).


Cell Biology International | 2009

Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts

Mengfei Chen; Xuerong Sun; Ruzhang Jiang; Wenjuan Shen; Xiufeng Zhong; Bingqian Liu; Ying Qi; Bing Huang; Andy Peng Xiang; Jian Ge

Pluripotent stem cells can be induced from somatic cells by the transcription factors Oct3/4, Sox2, c‐Myc and Klf4 when co‐cultured with mouse embryonic fibroblast (MEF) feeder cells. To date, the role of the feeder cells in the reprogramming process remains unclear. In this study, using a comparative analysis, we demonstrated that MEF feeder cells did not accelerate reprogramming or increase the frequency of induced pluripotent stem (iPS) cell colonies. However, feeder conditions did improve the growth of primary iPS colonies and were necessary for passaging the primary colonies after reprogramming was achieved. We further developed a feeder‐free culture system for supporting iPS growth and sustaining pluripotency by adding bFGF and activin A (bFA) to the medium. These data will facilitate the generation of human iPS cells without animal feeders for regenerative medicine.


Science China-life Sciences | 2005

Differentiation of embryonic stem cells into corneal epithelium

Zhichong Wang; Jian Ge; Bing Huang; Qianying Gao; Bingqian Liu; Linghua Wang; Ling Yu; Zhigang Fan; Xiaoming Lu; Jingbo Liu

Our project was to determine whether embryonic stem (ES) cells could be induced to differentiate into corneal epithelia by superficial corneoscleral limbal stroma. To achieve this goal, ES-GFP cell line D3 was pre-induced by retinoic acid (RA). The pre-induced cells were seeded on deepithelialized superficial corneoscleral slices (SCSS) to form a monolayer, and divided into three groups. Group 1 was cultured and passaged in vitro for direct detection. Group 2 was exposed to air-liquid interfaces for 10 days and implanted into the subcutaneous layer of nude mice for 2 weeks for further induction in vivo. Group 3 was cultured in vitro without any inducing factors for control. There were no teratomas found in nude mice which were implanted with differentiated ES cells after two weeks. The differentiated cells showed an appearance of epithelia both in vitro and in vivo. Expression of CK3, P63 and PCNA was detected by immuno-histochemical staining in the differentiated cells in group 1 and 2. Microvillis and zonula occludens were observed on the surface of the differentiated cells under an electron microscope. In the control group, ES cells differentiated freely without any inducing factors. Most cells were shed and formed a neuronal dendrite-like structure, and a minority of cells appeared polymorphic. These results demonstrate that ES cells can differentiate into corneal epithelia on the surface of SCSS under the controlled condition. Differentiated ES cells could be used as epithelial seeding cells for the reconstruction of ocular surface and corneal tissue engineering in the future.


Biochemical and Biophysical Research Communications | 2011

Hypoxia induces beta-amyloid in association with death of RGC-5 cells in culture

Juan Li; Zhizhang Dong; Bingqian Liu; Zhuo Yh; Xuerong Sun; Zhikuan Yang; Jian Ge; Zhiqun Tan

Beta-amyloid (Aβ) derived from amyloid precursor protein (APP) has been associated with retinal degeneration in Alzheimers disease (AD) and glaucoma. This study examined whether hypoxia exposure induces Aβ accumulation in RGC-5 cells. While levels of APP mRNA and protein significantly increased in the cells, elevated abundance of Aβ was also observed in cells and culture medium between 12 or 24 and 48h after 5% O(2) hypoxia treatment. Additionally, there is a close relationship between induction of APP and Aβ and intracellular accumulation of ROS along with loss of mitochondrial membrane potential followed by the death of RGC-5 cells in culture under hypoxia. These results suggest a possible involvement of APP and Aβ in the death of RGCs challenged by hypoxia.


PLOS ONE | 2017

Facing the challenges in ophthalmology clerkship teaching: Is flipped classroom the answer?

Ying Lin; Yi Zhu; Chuan Chen; Wei Wang; Tingting Chen; Tao Li; Yonghao Li; Bingqian Liu; Yu Lian; Lin Lu; Yuxian Zou; Yizhi Liu

Recent reform of medical education highlights the growing concerns about the capability of the current educational model to equip medical school students with essential skills for future career development. In the field of ophthalmology, although many attempts have been made to address the problem of the decreasing teaching time and the increasing load of course content, a growing body of literature indicates the need to reform the current ophthalmology teaching strategies. Flipped classroom is a new pedagogical model in which students develop a basic understanding of the course materials before class, and use in-class time for learner-centered activities, such as group discussion and presentation. However, few studies have evaluated the effectiveness of the flipped classroom in ophthalmology education. This study, for the first time, assesses the use of flipped classroom in ophthalmology, specifically glaucoma and ocular trauma clerkship teaching. A total number of 44 international medical school students from diverse background were enrolled in this study, and randomly divided into two groups. One group took the flipped glaucoma classroom and lecture-based ocular trauma classroom, while the other group took the flipped ocular trauma classroom and lecture-based glaucoma classroom. In the traditional lecture-based classroom, students attended the didactic lecture and did the homework after class. In the flipped classroom, students were asked to watch the prerecorded lectures before the class, and use the class time for homework discussion. Both the teachers and students were asked to complete feedback questionnaires after the classroom. We found that the two groups did not show differences in the final exam scores. However, the flipped classroom helped students to develop skills in problem solving, creative thinking and team working. Also, compared to the lecture-based classroom, both teachers and students were more satisfied with the flipped classroom. Interestingly, students had a more positive attitude towards the flipped ocular trauma classroom than the flipped glaucoma classroom regarding the teaching process, the course materials, and the value of the classroom. Therefore, the flipped classroom model in ophthalmology teaching showed promise as an effective approach to promote active learning.


Journal of Obstetrics and Gynaecology | 2014

Pregnancy outcome of overweight and obese Chinese women with gestational diabetes

Yingcai Zhang; Zilian Wang; Bingqian Liu; Jian Cai

Abstract We investigated the pregnancy outcome of overweight and obese Chinese women with gestational diabetes mellitus (GDM). Patients diagnosed as GDM from January 2010 to December 2011 were categorised into three groups, as normal weight, overweight and obese, according to the maternal pre-pregnancy body mass index (BMI) (kg/m2), 18.5–24.9, 25–29.9 and ≥ 30, respectively. Of the 604 GDM cases, 241 (39.9%), 211 (34.9%) and 152 (25.2%) subjects were normal weight, overweight and obese, respectively. Compared with subjects of normal weight, the incidence of assisted reproductive technology (ART) pregnancy, advanced maternal age, fetal macrosomia and emergency caesarean delivery were significantly higher in overweight and obese groups (p < 0.05). Obese women were at increased risk of premature rupture of membranes, pre-eclampsia and caesarean section compared with the other two groups (p < 0.05). Overweight and obese women with GDM have an increased risk of adverse pregnancy outcomes, even with good glycaemic control.


Cell Stress & Chaperones | 2014

Endoplasmic reticulum stress promotes amyloid-beta peptides production in RGC-5 cells

Bingqian Liu; Yingting Zhu; Jiayi Zhou; Yantao Wei; Chongde Long; Mengfei Chen; Yunlan Ling; Jian Ge; Yehong Zhuo

Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer’s disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer’s disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1–40 and Abeta1–42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.

Collaboration


Dive into the Bingqian Liu's collaboration.

Top Co-Authors

Avatar

Jian Ge

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lin Lu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chenjin Jin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Tao Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yonghao Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ying Lin

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Bing Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuerong Sun

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge