Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingqian Xie is active.

Publication


Featured researches published by Bingqian Xie.


Scientific Reports | 2016

Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells

Yuanyuan Kong; Gege Chen; Zhijian Xu; Guang Yang; Bo Li; Xiaosong Wu; Wenqin Xiao; Bingqian Xie; Liangning Hu; Xi Sun; Gaomei Chang; Minjie Gao; Lu Gao; Bojie Dai; Yi Tao; Weiliang Zhu; Jumei Shi

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Pterostilbene, a natural dimethylated analog of resveratrol, has been shown to possess diverse pharmacological activities, including anti-inflammatory, antioxidant and anticancer properties. However, to the best of our knowledge, there has been no study of the effects of pterostilbene upon hematological malignancies. Herein, we report the antitumor activity and mechanism of pterostilbene against DLBCL cells both in vitro and in vivo. We found that pterostilbene treatment resulted in a dose-dependent inhibition of cell viability. In addition, pterostilbene exhibited a strong cytotoxic effect, as evidenced not only by reductions of mitochondrial membrane potential (MMP) but also by increases in cellular apoptotic index and reactive oxygen species (ROS) levels, leading to arrest in the S-phase of the cell cycle. Furthermore, pterostilbene treatment directly up-regulated p-p38MAPK and down-regulated p-ERK1/2. In vivo, intravenous administration of pterostilbene inhibited tumor development in xenograft mouse models. Overall, the results suggested that pterostilbene is a potential anti-cancer pharmaceutical against human DLBCL by a mechanism involving the suppression of ERK1/2 and activation of p38MAPK signaling pathways.


International Journal of Molecular Sciences | 2016

Pterostilbene Inhibits Human Multiple Myeloma Cells via ERK1/2 and JNK Pathway In Vitro and In Vivo

Bingqian Xie; Zhijian Xu; Liangning Hu; Gege Chen; Rong Wei; Guang Yang; Bo Li; Gaomei Chang; Xi Sun; Huiqun Wu; Yong Zhang; Bojie Dai; Yi Tao; Jumei Shi; Weiliang Zhu

Multiple myeloma (MM) is the second most common malignancy in the hematologic system, which is characterized by accumulation of plasma cells in bone marrow. Pterostilbene (PTE) is a natural dimethylated analog of resveratrol, which has anti-oxidant, anti-inflammatory and anti-tumor properties. In the present study, we examined the anti-tumor effect of PTE on MM cell lines both in vitro and in vivo using the cell counting kit (CCK)-8, apoptosis assays, cell cycle analysis, reactive oxygen species (ROS) generation, JC-1 mitochondrial membrane potential assay, Western blotting and tumor xenograft models. The results demonstrated that PTE induces apoptosis in the H929 cell line and causes cell cycle arrest at G0/G1 phase by enhancing ROS generation and reducing mitochondrial membrane potential. The anti-tumor effect of PTE may be caused by the activation of the extracellular regulated protein kinases (ERK) 1/2 and c-Jun N-terminal kinase (JNK) signaling pathways. Additionally, mice treated with PTE by intraperitoneal injection demonstrated reduced tumor volume. Taken together, the results of this study indicate that the anti-tumor effect of PTE on MM cells may provide a new therapeutic option for MM patients.


Acta Biochimica et Biophysica Sinica | 2015

Antitumor activity of fucoidan against diffuse large B cell lymphoma in vitro and in vivo

Guang Yang; Qianqiao Zhang; Yuanyuan Kong; Bingqian Xie; Minjie Gao; Yi Tao; Hongwei Xu; Fenghuang Zhan; Bojie Dai; Jumei Shi; Xiaosong Wu

Fucoidan is one of the major sulfated polysaccharides isolated from brown seaweeds. In this study, we determined the anti-cancer activity of fucoidan on diffuse large B cell lymphoma (DLBCL) cells both in vitro and in vivo. Fucoidan inhibited the growth of DLBCL cells in a dose- and time-dependent manner, and fucoidan treatment provoked G0/G1 cell cycle arrest, which was accompanied by p21 up-regulation and cyclin D1, Cdk4, and Cdk6 down-regulation. Fucoidan also induced caspase-dependent cell apoptosis in DLBCL cell lines and primary DLBCL cell. In addition, fucoidan treatment caused the loss of mitochondrial membrane potential and the release of cytochrome c and apoptosis-inducing factor from the mitochondria into the cytosol. Fucoidan also potentiated the activities of carfilzomib in killing DLBCL cells. Oral administration of fucoidan effectively inhibited tumor growth in xenograft mouse models. Our findings reveal the novel function of fucoidan as an anti-DLBCL agent, which can be used in the clinical treatment of DLBCL.


Oncotarget | 2017

TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma

Yi Tao; Guang Yang; Hongxing Yang; Dongliang Song; Liangning Hu; Bingqian Xie; Houcai Wang; Lu Gao; Minjie Gao; Hongwei Xu; Zhijian Xu; Xiaosong Wu; Yiwen Zhang; Weiliang Zhu; Fenghuang Zhan; Jumei Shi

AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies.


Oncotarget | 2016

Overexpression of RPS27a contributes to enhanced chemoresistance of CML cells to imatinib by the transactivated STAT3.

Houcai Wang; Bingqian Xie; Yuanyuan Kong; Yi Tao; Guang Yang; Minjie Gao; Hongwei Xu; Fenghuang Zhan; Jumei Shi; Yiwen Zhang; Xiaosong Wu

STAT3 plays a pivotal role in the hematopoietic system, which constitutively activated by BCR–ABL via JAK and Erk/MAP-kinase pathways. Phospho-STAT3 was overexpressed in imatinib-resistant CML patients as relative to imatinib responsive ones. By activation of the STAT3 pathway, BCR–ABL can promote cell cycling, and inhibit differentiation and apoptosis. Ribosomal protein S27a (RPS27a) performs extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. RPS27a can promote proliferation, regulate cell cycle progression and inhibit apoptosis of leukemia cells. However, the relationship between STAT3 and RPS27a has not been reported. In this study, we detected a significantly increased expression of STAT3 and RPS27a in bone marrow samples from CML-AP/BP patients compared with those from CML-CP. In addition, we also demonstrated that it was a positive correlation between the level of STAT3 and that of RPS27a. Imatinib-resistant K562/G01 cells expressed significantly higher levels of STAT3 and RPS27a compared with those of K562 cells. RPS27a could be transactivated by p-STAT3 through the specific p-STAT3-binding site located nt −633 to −625 and −486 to −478 of the RPS27a gene promoter in a dose-dependent manner. The transactivated RPS27a could decrease the percentage of apoptotic CML cells induced by imatinib. And the effect of STAT3 overexpression could be counteracted by the p-STAT3 inhibitor WP1066 or RPS27a knockdown. These results suggest that drugs targeting STAT3/p-STAT3/RPS27a combining with TKI might represent a novel therapy strategy in patients with TKI-resistant CML.


Cell Death and Disease | 2017

DCZ3301, a novel cytotoxic agent, inhibits proliferation in diffuse large B-cell lymphoma via the STAT3 pathway

Xi Sun; Bo Li; Bingqian Xie; Zhijian Xu; Gaomei Chang; Yi Tao; Yong Zhang; Shuaikang Chang; Yingcong Wang; Dandan Yu; Yongsheng Xie; Tingye Li; Houcai Wang; Gege Chen; Liangning Hu; Jun Hou; Yiwen Zhang; Wenqin Xiao; Lu Gao; Jumei Shi; Weiliang Zhu

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, characterized by a rapidly increasing painless mass. A novel compound, DCZ3301, was synthesized that exerted direct cytotoxicity against DLBCL cell lines. The effects of DCZ3301 on DLBCL cells in vitro and in vivo and the associated mechanisms were investigated. DCZ3301 inhibited the viability of DLBCL cell lines, even in the presence of protumorigenesis cytokines. Additionally, the compound induced apoptosis and cell cycle arrest at the G2/M phase by reducing mitochondrial membrane potential. DCZ3301 exerted an antitumor effect through modulation of Akt, extracellular signal-regulated kinases 1/2 (ERK1/2) and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathways. Furthermore, DCZ3301 downregulates STAT3 phosphorylation by inhibiting Lck/Yes-related novel protein tyrosine kinase (Lyn) activation in DLBCL. A synergistic cytotoxic effect on DLBCL cells was observed upon combination of DCZ3301 with panobinostat. In vivo, intraperitoneal injection of xenograft mice with DCZ3301 resulted in reduced tumor volume. Our preliminary results collectively support the utility of the small-molecule inhibitor DCZ3301 as an effective novel therapeutic option for DLBCL that requires further clinical evaluation.


Oncotarget | 2016

Therapeutic potential and functional interaction of carfilzomib and vorinostat in T-cell leukemia/lymphoma

Minjie Gao; Gege Chen; Houcai Wang; Bingqian Xie; Liangning Hu; Yuanyuan Kong; Guang Yang; Yi Tao; Ying Han; Xiaosong Wu; Yiwen Zhang; Bojie Dai; Jumei Shi

We previously showed that the proteasome inhibitor carfilzomib and the histone deacetylase inhibitor (HDACI) vorinostat cooperated to induce cell apoptosis in one T-cell leukemia cell line in vitro, implying the possibility of the combination treatment of carfilzomib and vorinostat as a potential therapeutic strategy in human T-cell leukemia/lymphoma. Here we report that combination treatment of carfilzomib and vorinostat enhanced cell apoptosis and induced a marked increase in G2-M arrest, reactive oxygen species (ROS) generation, and activated the members of mitogen-activated protein kinases (MAPK) family, including the stress-activated kinases JNK, p38MAPK, and ERK1/2. Carfilzomib/vorinostat-mediated apoptosis was blocked by the ROS scavenger N-acetylcysteine (NAC). The JNK inhibitor SP600125 and the p38MAPK inhibitor SB203580 but not the MEK1/2 inhibitor U0126 significantly attenuated carfilzomib/vorinostat-induced apoptosis, suggesting that p38MAPK and JNK activation contribute to carfilzomib and vorinostat-induced apoptosis. This was further confirmed via short hairpin (shRNA) RNA knockdown of p38MAPK and JNK. Interestingly, the ROS scavenger NAC attenuated carfilzomib/vorinostat-mediated activation of p38MAPK and JNK. However, p38MAPK shRNA but not JNK shRNA diminished carfilzomib/vorinostat-mediated ROS generation. In contrast, overexpression of p38MAPK significantly increased carfilzomib/vorinostat-mediated ROS generation, suggesting that an amplification loop exists between ROS and p38MAPK pathway. Combination treatment of carfilzomib and vorinostat enhanced their individual antitumor activity in both a human xenograft model as well as human primary T-cell leukemia/lymphoma cells. These data suggest the potential clinical benefit and underlying molecular mechanism of combining carfilzomib with vorinostat in the treatment of human T-cell leukemia/lymphoma.


Theranostics | 2017

Preclinical activity of DCZ3301, a novel aryl-guanidino compound in the therapy of multiple myeloma

Minjie Gao; Bo Li; Xi Sun; Zhou Yc; Yingcong Wang; Van S. Tompkins; Zhijian Xu; Nekitsing Indima; Houcai Wang; Wenqin Xiao; Lu Gao; Gege Chen; Huiqun Wu; Xiaosong Wu; Yuanyuan Kong; Bingqian Xie; Yiwen Zhang; Gaomei Chang; Liangning Hu; Guang Yang; Bojie Dai; Yi Tao; Weiliang Zhu; Jumei Shi

We synthesized a novel aryl-guanidino compound, DCZ3301, and found that it has potent cytotoxicity against multiple human cancer cell lines. The anticancer activity was most potent against multiple myeloma (MM). DCZ3301 induced cytotoxicity in MM cell lines, as well as patient myeloma cells, in part by decreasing mitochondrial membrane potential to induce apoptosis. In contrast, DCZ3301 had no cytotoxic effect on normal cells. DCZ3301 also inhibited cell cycling and caused a G2/M accumulation that corresponded with downregulation of Cdc25C, CDK1, and Cyclin B1. DCZ3301 retained its activity against MM cells in the presence of exogenous cytokines (IL-6 or VEGF) or bone marrow stromal cells (BMSCs) and reduced activity of multiple signaling pathways (STAT3, NFκB, AKT, ERK1/2) in MM but not normal cells. The STAT3 pathway played an important role in modulating DCZ3301-mediated cytotoxicity. Knockdown of STAT3 using siRNA in MM cells enhanced DCZ3301-induced cytotoxicity, whereas overexpression of STAT3 in MM cells partially protected them from apoptosis. In addition, DCZ3301 inhibited VEGF and IL-6 secretion in a dose-dependent fashion in a co-culture of MM cells and BMSCs. Combining DCZ3301 with bortezomib induced synergistic cytotoxicity in MM cell lines and primary MM cells. Finally, in vivo efficacy of DCZ3301 was confirmed in an MM xenograft mouse model. Together, these results provide a rationale for translation of this small-molecule inhibitor, either alone or in combination, to the clinic against MM.


BioMed Research International | 2017

Pterostilbene Induces Cell Apoptosis and Cell Cycle Arrest in T-Cell Leukemia/Lymphoma by Suppressing the ERK1/2 Pathway

Gaomei Chang; Wenqin Xiao; Zhijian Xu; Dandan Yu; Bo Li; Yong Zhang; Xi Sun; Yongsheng Xie; Shuaikang Chang; Lu Gao; Gege Chen; Liangning Hu; Bingqian Xie; Bojie Dai; Weiliang Zhu; Jumei Shi

Pterostilbene is a natural 3,5-dimethoxy analog of trans-resveratrol that has been reported to have antitumor, antioxidant, and anti-inflammatory effects. T-cell leukemia/lymphoma is one of the more aggressive yet uncommon non-Hodgkin lymphomas. Although there has been increasing research into T-cell leukemia/lymphoma, the molecular mechanisms of the antitumor effects of pterostilbene against this malignancy are still largely unknown. The aim of this study is to confirm the effects of pterostilbene in T-cell leukemia/lymphoma. Jurkat and Hut-78 cells treated with pterostilbene were evaluated for cell proliferation using Cell Counting Kit-8, and apoptosis, cell cycle progression, reactive oxygen species generation, and mitochondrial membrane potential were analyzed using flow cytometry. The level of protein expression was detected by western blot. The results demonstrated that pterostilbene significantly inhibited the growth of T-cell leukemia/lymphoma cell lines in vitro and induced apoptosis in a dose- and time-dependent manner. Moreover, pterostilbene treatment markedly induced S-phase cell cycle arrest, which was accompanied by downregulation of cdc25A, cyclin A2, and CDK2. Pterostilbene also induced the generation of reactive oxygen species and the loss of mitochondrial membrane potential and inhibited ERK1/2 phosphorylation. Taken together, our study demonstrated the potential of pterostilbene to be an effective treatment for T-cell leukemia/lymphoma.


Acta Biochimica et Biophysica Sinica | 2017

Dihydrocelastrol inhibits multiple myeloma cell proliferation and promotes apoptosis through ERK1/2 and IL-6/STAT3 pathways in vitro and in vivo

Liangning Hu; Huiqun Wu; Bo Li; Dongliang Song; Guang Yang; Gege Chen; Bingqian Xie; Zhijian Xu; Yong Zhang; Dandan Yu; Jun Hou; Wenqin Xiao; Xi Sun; Gaomei Chang; Yiwen Zhang; Lu Gao; Bojie Dai; Yi Tao; Jumei Shi; Weiliang Zhu

Multiple myeloma (MM) is the second most frequent malignant hematological disease. Dihydrocelastrol (DHCE) is synthesized by hydrogenated celastrol, a treterpene isolated from Chinese medicinal plant Tripterygium regelii. In this study, we first reported the anti-tumor activity of DHCE on MM cells. We found that DHCE could inhibit cell proliferation and promote apoptosis through caspase-dependent way in vitro. In addition, DHCE could inactivate the expression of interleukin (IL)-6 and downregulate the phosphorylation of extracellular regulated protein kinases (ERK1/2) and the signal transducer and activator of transcription 3 (STAT3) in MM. It also retained its activity against MM cell lines in the presence of IL-6. Furthermore, treatment of MM cells with DHCE resulted in an accumulation of cells in G0/G1 phase of the cell cycle. Notably, DHCE reduced the expression of cyclin D1 and cyclin-dependent kinases 4 and 6 in MM cell lines. Additionally, its efficacy toward the MM cell lines could be enhanced in combination with the histone deacetylase inhibitor panobinostat (LBH589), which implied the possibility of the combination treatment of DHCE and LBH589 as a potential therapeutic strategy in MM. In addition, treatment of NCI-H929 tumor-bearing nude mice with DHCE (10 mg/kg/d, i.p., 1-14 days) resulted in 73% inhibition of the tumor growth in vivo. Taken together, the results of our present study indicated that DHCE could inhibit cellular proliferation and induce cell apoptosis in myeloma cells mediated through different mechanisms, possibly through inhibiting the IL-6/STAT3 and ERK1/2 pathways. And it may provide a new therapeutic option for MM patients.

Collaboration


Dive into the Bingqian Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiliang Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Li

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bojie Dai

University of Maryland

View shared research outputs
Researchain Logo
Decentralizing Knowledge