Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingqing Wei is active.

Publication


Featured researches published by Bingqing Wei.


Nature Nanotechnology | 2011

Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

Wei Gao; Neelam Singh; Li Song; Zheng Liu; Arava Leela Mohana Reddy; Lijie Ci; Robert Vajtai; Qing Zhang; Bingqing Wei; Pulickel M. Ajayan

Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.


Advanced Materials | 2009

Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms.

Cunjiang Yu; Charan Masarapu; Jiepeng Rong; Bingqing Wei; Hanqing Jiang

Adv. Mater. 2009, 21, 4793–4797 2009 WILEY-VCH Verlag G N Stretchable electronic devices, such as p–n diodes, photovoltaic devices, transistors, and functional electronic eyes, have been fabricated using buckled single-crystal (e.g., Si, GaAs) thin films supported by elastomeric substrates. Recently, carbon nanotube (CNT)-based highly conducting elastic composites and stretchable graphene films have been reported, which are suitable as interconnects in stretchable electronic devices. As an indispensable component of stretchable electronics, a stretchable power-source device should be able to accommodate large strains while retaining intact function. Of various power-source devices, supercapacitors have attracted great interest in recent years due to their high power and energy densities compared with lithium-ion batteries and conventional dielectric capacitors, respectively. The most active research in supercapacitors is the development of new electrode materials. Recently, CNTs have been studied as good candidates for electrode materials because of several advantages, including a high surface area, nanoscale dimensions, and excellent electrical conductivity. Here, we report stretchable supercapacitors based on periodically sinusoidal single-walled carbon nanotube (SWNT) macrofilms (a 2D network of randomly oriented SWNTs). The stretchable supercapacitors comprise two sinusoidal SWNT macrofilms as stretchable electrodes, an organic electrolyte, and a polymeric separator. Electrochemical tests were performed and the fabricated stretchable supercapacitors are found to possess energy and power densities comparable with those of supercapacitors using pristine SWNT macrofilms as electrodes. Remarkably, the electrochemical performance of the stretchable supercapacitors remains unchanged even under 30% applied tensile strain. The preparation of the periodically sinusoidal SWNT macrofilms is of primary importance for stretchable supercapacitors. The synthesis of high-quality, purified, and functionalized SWNT macrofilms is, thus, an important preprocess, which has been presented elsewhere. The purified SWNT macrofilm was then shaped to a sinusoidal form by following the steps shown in Figure 1a. The procedure introduced here (step i in Fig. 1a) involves the uniaxial prestretching (epre) of an elastomeric substrate of a poly(dimethylsiloxane) (PDMS) slab (epre1⁄4DL/L for length changed from L to LþDL), followed by a chemical surface treatment to form a hydrophilic surface (see Experimental Section). The exposure of UV light introduces atomic oxygen, an activated species that reacts with PDMS and, thus, changes the


ACS Nano | 2009

Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors

Charan Masarapu; Hai Feng Zeng; Kai Hsuan Hung; Bingqing Wei

The effect of temperature on the kinetics and the diffusion mechanism of the ions in a supercapacitor assembled with single-walled carbon nanotube (SWNT) film electrodes and an organic electrolyte were thoroughly investigated. An improved room temperature performance of the supercapacitor was observed due to the combined effects of an increase in the conductivity of the SWNT films and surface modifications on the SWNT films by repeatedly heating and cooling the supercapacitor between the temperatures of 25 and 100 degrees C. Modified Randles equivalent circuit was employed to carry out an extensive analysis of the Nyquist spectra measured at different temperatures between 25 and 100 degrees C in order to understand the fundamentals of the capacitive and resistive variations in the supercapacitor. The experimental results and their thorough analysis will have significant impact not only on the fundamental understanding of the temperature-dependent electrode/electrolyte interfacial properties but also on supercapacitor design with appropriate electrode materials for numerous industrial and consumer applications. The supercapacitor with SWNT film electrodes was capable of withstanding current densities as high as 100 A/g, yielding eminent specific power density values of about 55 kW/kg. Ultralong galvanostatic charge-discharge cycling over 200 000 cycles with a constant current density of 20 A/g at 25 and 100 degrees C, respectively, showed excellent stability in capacitance with more than 80% efficiency. The usage of such a supercapacitor potentially enables far-reaching advances in backup energy storage and high pulse power applications.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams

Nirupama Chakrapani; Bingqing Wei; Alvaro Carrillo; Pulickel M. Ajayan; Ravi S. Kane

Capillary forces arising during the evaporation of liquids from dense carbon nanotube arrays are used to reassemble the nanotubes into two-dimensional contiguous cellular foams. The stable nanotube foams can be elastically deformed, transferred to other substrates, or floated out to produce free-standing macroscopic fabrics. The lightweight cellular foams made of condensed nanotubes could have applications as shock-absorbent structural reinforcements and elastic membranes. The ability to control the length scale, orientation, and shape of the cellular structures and the simplicity of the assembly process make this a particularly attractive system for studying pattern formation in ordered media.


Advanced Materials | 2014

Materials and Structures for Stretchable Energy Storage and Conversion Devices

Keyu Xie; Bingqing Wei

Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed.


ACS Nano | 2010

Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.

Xin Li; Jiepeng Rong; Bingqing Wei

The effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with single-walled carbon nanotube (SWNT) film electrodes and 1 M aqueous electrolytes with different anions and cations were thoroughly investigated. The under-pressed capacitive and resistive features of the supercapacitors were studied by means of cyclic voltammetry measurements and electrochemical impedance analysis. The results demonstrated that the specific capacitance increased first and saturated in corresponding decreases of the series resistance, the charge-transfer resistance, and the Warburg diffusion resistance under an increased pressure from 0 to 1723.96 kPa. Wettability as well as ion-size effect of different aqueous electrolytes played important roles to determine the pressure dependence behavior of the suerpcapacitors under an applied pressure. An improved high-frequency capacitive response with 1172 Hz knee frequency, which is significantly higher compared to reported values, was observed under the compressive pressure of 1723.96 kPa, indicating an improving and excellent high-power capability of the supercapacitors under the pressure. The experimental results and the thorough analysis described in this work not only provide fundamental insight of pressure effects on supercapacitors but also give an important guideline for future design of next generation flexible/stretchable supercapacitors for industrial and consumer applications.


ACS Nano | 2015

Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers

Ping Xu; Bingqing Wei; Zeyuan Cao; Jie Zheng; Ke Gong; Faxue Li; Jianyong Yu; Qingwen Li; Weibang Lu; Joon-Hyung Byun; Byung-Sun Kim; Yushan Yan; Tsu-Wei Chou

While the emerging wire-shaped supercapacitors (WSS) have been demonstrated as promising energy storage devices to be implemented in smart textiles, challenges in achieving the combination of both high mechanical stretchability and excellent electrochemical performance still exist. Here, an asymmetric configuration is applied to the WSS, extending the potential window from 0.8 to 1.5 V, achieving tripled energy density and doubled power density compared to its asymmetric counterpart while accomplishing stretchability of up to 100% through the prestrainning-then-buckling approach. The stretchable asymmetric WSS constituted of MnO2/CNT hybrid fiber positive electrode, aerogel CNT fiber negative electrode and KOH-PVA electrolyte possesses a high specific capacitance of around 157.53 μF cm(-1) at 50 mV s(-1) and a high energy density varying from 17.26 to 46.59 nWh cm(-1) with the corresponding power density changing from 7.63 to 61.55 μW cm(-1). Remarkably, a cyclic tensile strain of up to 100% exerts negligible effects on the electrochemical performance of the stretchable asymmetric WSS. Moreover, after 10,000 galvanostatic charge-discharge cycles, the specific capacitance retains over 99%, demonstrating a long cyclic stability.


Nano Letters | 2012

Dynamic and galvanic stability of stretchable supercapacitors.

Xin Li; Taoli Gu; Bingqing Wei

Stretchable electronics are emerging as a new technological advancement, since they can be reversibly stretched while maintaining functionality. To power stretchable electronics, rechargeable and stretchable energy storage devices become a necessity. Here, we demonstrate a facile and scalable fabrication of full stretchable supercapacitor, using buckled single-walled carbon nanotube macrofilms as the electrodes, an electrospun membrane of elastomeric polyurethane as the separator, and an organic electrolyte. We examine the electrochemical performance of the fully stretchable supercapacitors under dynamic stretching/releasing modes in different stretching strain rates, which reveal the true performance of the stretchable cells, compared to the conventional method of testing the cells under a statically stretched state. In addition, the self-discharge of the supercapacitor and the electrochemical behavior under bending mode are also examined. The stretchable supercapacitors show excellent cyclic stability under electrochemical charge/discharge during in situ dynamic stretching/releasing.


ACS Nano | 2016

Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries

Jian-Gan Wang; Dandan Jin; Rui Zhou; Xu Li; Xingrui Liu; Chao Shen; Keyu Xie; Baohua Li; Feiyu Kang; Bingqing Wei

Advanced electrode design is crucial in the rapid development of flexible energy storage devices for emerging flexible electronics. Herein, we report a rational synthesis of graphene/Mn3O4 nanocomposite membranes with excellent mechanical flexibility and Li-ion storage properties. The strong interaction between the large-area graphene nanosheets and long Mn3O4 nanowires not only enables the membrane to endure various mechanical deformations but also produces a strong synergistic effect of enhanced reaction kinetics by providing enlarged electrode/electrolyte contact area and reduced electron/ion transport resistance. The mechanically robust membrane is explored as a freestanding anode for Li-ion batteries, which delivers a high specific capacity of ∼800 mAh g(-1) based on the total electrode mass, along with superior high-rate capability and excellent cycling stability. A flexible full Li-ion battery is fabricated with excellent electrochemical properties and high flexibility, demonstrating its great potential for high-performance flexible energy storage devices.


Energy and Environmental Science | 2013

A perspective: carbon nanotube macro-films for energy storage

Zeyuan Cao; Bingqing Wei

The ever-increasing demand of electricity storage is a growing challenge among a broad range of renewable energy sources. The development of high-energy storage devices has been one of the most important research areas in modern days. In particular, rechargeable batteries and electrochemical capacitors are recognized as the primary power sources for applications from portable electronic devices to electric vehicles. In order to power the emerging flexible/stretchable electronics, power sources themselves must be able to accommodate high levels of deformation and stretchability in addition to high energy and power density, light weight, miniaturization in size, safety qualification, and other significant characteristics. Utilizing carbon nanotubes (CNTs) for various energy storage applications such as electrodes in lithium ion batteries and supercapacitors, are under close scrutiny because of the promising electrochemical performance in addition to their extraordinary tensile strength and flexibility, ultrahigh surface area, and excellent thermal and electrical conductivity. Recently, there has been growing interest in investigating CNT macro-films with large-scale organized nanostructures of desired shape and form and unique and enhanced properties: integrity and stability to realize the scaled-up energy storage devices. In this perspective, research efforts in assembling 2-D CNT macro-films using a chemical vapor deposition method and their applications for different energy storage devices including stretchable supercapacitors, supercapacitors working under extreme conditions such as high temperature and high pressure, and lithium–ion batteries are discussed. In details, this paper provides an original overview involving the effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with CNT macro-film electrodes and electrolytes with different anions and cations; the demonstration of the dynamic and galvanic stability of stretchable supercapacitor using buckled CNT macro-films by an in situ dynamic electrochemical testing method; the understandings on the self-discharge mechanisms of CNT macrofilm-based supercapacitors from both electrode and electrolyte aspects; and the investigation of the electrochemical properties of the tandem structure of active materials (e.g. thin porous silicon film and CuO) with CNT macro-films acting as a flexible and adhesive layer between the active layers and current collectors for lithium–ion batteries. Future research on CNT macro-films-based lithium–sulfur batteries and lithium–air batteries is also discussed.

Collaboration


Dive into the Bingqing Wei's collaboration.

Top Co-Authors

Avatar

Jian-Gan Wang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Keyu Xie

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Shen

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

L. Hu

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

S.J. Yang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Xuanhua Li

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. J. Xie

Northwestern Polytechnical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge