Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingteng Xie is active.

Publication


Featured researches published by Bingteng Xie.


EMBO Reports | 2016

A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two‐cell embryos

Jiaqiang Wang; Xin Li; Leyun Wang; Jingyu Li; Yanhua Zhao; Gerelchimeg Bou; Yu-Fei Li; Guanyi Jiao; Xinghui Shen; Renyue Wei; Shichao Liu; Bingteng Xie; Lei Lei; Wei Li; Qi Zhou; Zhonghua Liu

Endogenous retroviruses (ERVs) are transcriptionally active in cleavage stage embryos, yet their functions are unknown. ERV sequences are present in the majority of long intergenic noncoding RNAs (lincRNAs) in mouse and humans, playing key roles in many cellular processes and diseases. Here, we identify LincGET as a nuclear lincRNA that is GLN‐, MERVL‐, and ERVK‐associated and essential for mouse embryonic development beyond the two‐cell stage. LincGET is expressed in late two‐ to four‐cell mouse embryos. Its depletion leads to developmental arrest at the late G2 phase of the two‐cell stage and to MAPK signaling pathway inhibition. LincGET forms an RNA–protein complex with hnRNP U, FUBP1, and ILF2, promoting the cis‐regulatory activity of long terminal repeats (LTRs) in GLN, MERVL, and ERVK (GLKLTRs), and inhibiting RNA alternative splicing, partially by downregulating hnRNP U, FUBP1, and ILF2 protein levels. Hnrnpu or Ilf2 mRNA injection at the pronuclear stage also decreases the preimplantation developmental rate, and Fubp1 mRNA injection at the pronuclear stage causes a block at the two‐cell stage. Thus, as the first functional ERV‐associated lincRNA, LincGET provides clues for ERV functions in cleavage stage embryonic development.


PLOS ONE | 2014

Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig.

Qingran Kong; Tang Hai; Jing Ma; Tianqing Huang; Dandan Jiang; Bingteng Xie; Meiling Wu; Jiaqiang Wang; Yuran Song; Ying Wang; Yilong He; Jialu Sun; Kui Hu; Runfa Guo; Liu Wang; Qi Zhou; Yanshuang Mu; Zhonghua Liu

Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene in mouse, human and rat, as it can be targeted efficiently and is not subject to gene-silencing effects. Recently, the first case of reporter gene targeting pigs in porcine Rosa26 (pRosa26) locus was reported. In the study, full sequence of pRosa26 locus was further characterized, and the pRosa26 promoter (pR26) was cloned and we evidenced that the new porcine endogenous promoter is suitable for driving transgene expression in a high and stable manner by avoiding DNA methylation. Furthermore, elongation factor 1a promoter (EF1a) -driven GFP reporter and Myostatin promoter (MyoP)-driven Follistatin (Fst) were successfully targeted into the pRosa26 locusby traditional homologous recombination (HR) strategy. EF1a showed high activity and hypomethylation at the locus. And, muscle-specific promoter MyoP was activated strictly in muscle of the pRosa26 targeted pigs, indicating Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner. The study provided further demonstration on biomedical and agricultural applications of porcine Rosa26 promoter and locus.


Protein & Cell | 2014

Efficient generation of mouse ESCs-like pig induced pluripotent stem cells

Qi Gu; Jie Hao; Tang Hai; Jianyu Wang; Yundan Jia; Qingran Kong; Juan Wang; Chunjing Feng; Binghua Xue; Bingteng Xie; Shichao Liu; Jinyu Li; Yilong He; Jialu Sun; Lei Liu; Liu Wang; Zhonghua Liu; Qi Zhou

Dear Editor, Porcine induced pluripotency stem cells (piPSCs) are promised in basic research, animal husbandry and regenerative medicine. However, the efficiency of the piPSCs induction has been low and the generated piPSCs varied in cell morphology and cell characteristics. Here we report a novel approach to improve efficiency of piPSCs generation. The induced piPSCs are dome-shaped mouse embryonic stem cells (ESCs)-like and display molecular properties of mouse ESCs. Electroporation study reveals that mouse ESCslike status facilitates genetic manipulating of piPSCs. Importantly, we demonstrate that the domed piPSC colonies are more suitable as donor cells for nuclear transfer (NT) to generate reconstructed embryos than those flattened piPSCs. The potential applications of the newly generated piPSCs in ungulate pluripotent research are discussed.


Journal of Biological Chemistry | 2014

Identification and Characterization of an Oocyte Factor Required for Porcine Nuclear Reprogramming

Qingran Kong; Bingteng Xie; Jingyu Li; Yanjun Huan; Tianqing Huang; Renyue Wei; Jiawei Lv; Shichao Liu; Zhonghua Liu

Background: Oocyte factors can reprogram the somatic nucleus efficiently, but these factors still need to be defined. Results: Maternal vimentin acts as a genomic protector and results in p53 down-regulation during nuclear reprogramming. Conclusion: Maternal vimentin is crucial for nuclear reprogramming. Significance: We report the first evidence of vimentin as a reprogramming factor. Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.


Reproduction | 2016

Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming

Bingteng Xie; Heng Zhang; Renyue Wei; Qiannan Li; Xiaogang Weng; Qingran Kong; Zhonghua Liu

Aberrant epigenetic reprogramming is the main obstacle to the development of somatic cell nuclear transfer (SCNT) embryos and the generation of induced pluripotent stem (iPS) cells, which results in the low reprogramming efficiencies of SCNT and iPS. Histone H3 lysine 27 trimethylation (H3K27me3), as a repressive epigenetic mark, plays important roles in mammalian development and iPS induction. However, the reprogramming of H3K27me3 in pig remains elusive. In this study, we showed that H3K27me3 levels in porcine early cloned embryos were higher than that in IVF embryos. Then GSK126 and GSK-J4, two small molecule inhibitors of H3K27me3 methylase (EZH2) and demethylases (UTX/JMJD3), were used to regulate the H3K27me3 level. The results showed that H3K27me3 level was reduced in cloned embryos after treatment of PEF with 0.75 μM GSK126 for 48 h, incubation of one-cell reconstructed oocytes with 0.1 μM GSK126 and injection of antibody for EZH2 into oocyte. Meanwhile, the development of the cloned embryos was significantly improved after these treatments. On the contrary, GSK-J4 treatment increased the H3K27me3 level in cloned embryos and decreased the cloned embryonic development. Furthermore, iPS efficiency was both increased after reducing the H3K27me3 level in donor cells and in early reprogramming phase. In summary, our results suggest that H3K27me3 acts as an epigenetic barrier in SCNT and iPS reprogramming, and reduction of H3K27me3 level in donor cells and in early reprogramming phase can enhance both porcine SCNT and iPS efficiency.


Stem Cell Reviews and Reports | 2014

Telomere Elongation Facilitated by Trichostatin A in Cloned Embryos and Pigs by Somatic Cell Nuclear Transfer

Qingran Kong; Guangzhen Ji; Bingteng Xie; Jingyu Li; Jian Mao; Juan Wang; Shichao Liu; Lin Liu; Zhonghua Liu

Telomere attrition and genomic instability are associated with organism aging. Concerns still exist regarding telomere length resetting in cloned embryos and ntES cells, and possibilities of premature aging of cloned animals achieved by somatic cell nuclear transfer (SCNT). Trichostatin A (TSA), a histone deacetylase inhibitor, effectively improves the developmental competence of cloned embryos and animals, and recently contributes to successful generation of human ntES cells by SCNT. To test the function of TSA on resetting telomere length, we analyzed telomeres in cloned blastocysts and pigs following treatment of SCNT embryos with TSA. Here, we show that telomeres of cloned pigs generated by standard SCNT methods are not effectively restored, compared with those of donor cells, however TSA significantly increases telomere lengths in cloned pigs. Telomeres elongate in cloned porcine embryos during early cleavage from one-cell to four-cell stages. Notably, TSA facilitates telomere lengthening of cloned embryos mainly at morula-blastocyst stages. Knockdown of pTert by shRNA in donor cells reduces telomerase activity in cloned blastocysts but does not abrogate telomere elongation in the TSA-treated embryos (p > 0.05). However, genes associated with recombination or telomerase-independent mechanism of alternative lengthening of telomeres (ALT) Rad50 and BLM show increased expression in TSA-treated embryos. These data suggest that TSA may promote telomere elongation of cloned porcine embryos by ALT. Together, TSA can elongate telomeres in cloned embryos and piglets, and this could be one of the mechanisms underlying improved development of cloned embryos and animals treated with TSA.


PLOS ONE | 2015

A Novel Role for DNA Methyltransferase 1 in Regulating Oocyte Cytoplasmic Maturation in Pigs

Yanjun Huan; Bingteng Xie; Shichao Liu; Qingran Kong; Zhonghua Liu

Maternal factors are required for oocyte maturation and embryo development. To better understand the role of DNA methyltransferase 1 (Dnmt1) in oocyte maturation and embryo development, small interfering RNA (siRNA) was conducted in porcine oocytes. In this study, our results showed that Dnmt1 localized in oocyte cytoplasm and its expression displayed no obvious change during oocyte maturation. When siRNAs targeting Dnmt1 were injected into germinal vesicle (GV) stage oocytes, Dnmt1 transcripts significantly decreased in matured oocytes (P<0.05). After Dnmt1 knockdown in GV stage oocytes, the significant reduction of glutathione content, mitochondrial DNA copy number, glucose-6-phosphate dehydrogenase activity and expression profiles of maternal factors and the severely disrupted distribution of cortical granules were observed in MII stage oocytes (P<0.05), leading to the impaired oocyte cytoplasm. Further study displayed that Dnmt1 knockdown in GV stage oocytes significantly reduced the development of early embryos generated through parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (P<0.05). In conclusion, Dnmt1 was indispensable for oocyte cytoplasmic maturation, providing a novel role for Dnmt1 in the regulation of oocyte maturation.


Genomics, Proteomics & Bioinformatics | 2013

Generation and Developmental Characteristics of Porcine Tetraploid Embryos and Tetraploid/diploid Chimeric Embryos

Wenteng He; Qingran Kong; Yongqian Shi; Bingteng Xie; Mingxia Jiao; Tianqing Huang; Shimeng Guo; Kui Hu; Zhonghua Liu

The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P < 0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P > 0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P < 0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.


Reproduction | 2014

Identification and characterization of an oocyte factor required for sperm decondensation in pig

Jingyu Li; Yanjun Huan; Bingteng Xie; Jiaqiang Wang; Yanhua Zhao; Mingxia Jiao; Tianqing Huang; Qingran Kong; Zhonghua Liu

Mammalian oocytes possess factors to support fertilization and embryonic development, but knowledge on these oocyte-specific factors is limited. In the current study, we demonstrated that porcine oocytes with the first polar body collected at 33 h of in vitro maturation sustain IVF with higher sperm decondensation and pronuclear formation rates and support in vitro development with higher cleavage and blastocyst rates, compared with those collected at 42 h (P<0.05). Proteomic analysis performed to clarify the mechanisms underlying the differences in developmental competence between oocytes collected at 33 and 42 h led to the identification of 18 differentially expressed proteins, among which protein disulfide isomerase associated 3 (PDIA3) was selected for further study. Inhibition of maternal PDIA3 via antibody injection disrupted sperm decondensation; conversely, overexpression of PDIA3 in oocytes improved sperm decondensation. In addition, sperm decondensation failure in PDIA3 antibody-injected oocytes was rescued by dithiothreitol, a commonly used disulfide bond reducer. Our results collectively report that maternal PDIA3 plays a crucial role in sperm decondensation by reducing protamine disulfide bonds in porcine oocytes, supporting its utility as a potential tool for oocyte selection in assisted reproduction techniques.


Journal of Biological Chemistry | 2016

RE1-silencing Transcription Factor (REST) Is Required for Nuclear Reprogramming by Inhibiting Transforming Growth Factor β Signaling Pathway.

Qingran Kong; Bingteng Xie; Heng Zhang; Jingyu Li; Tianqing Huang; Renyue Wei; Zhonghua Liu

Differentiated cells can be reprogrammed by transcription factors, and these factors that are responsible for successful reprogramming need to be further identified. Here, we show that the neuronal repressor RE1-silencing transcription factor (REST) is rich in porcine oocytes and requires for nuclear transfer (NT)-mediated reprogramming through inhibiting TGFβ signaling pathway. REST was dramatically degraded after oocyte activation, but the residual REST was incorporated into the transferred donor nuclei during reprogramming in NT embryos. Inhibition of REST function in oocytes compromised the development of NT embryos but not that of IVF and PA embryos. Bioinformation analysis of putative targets of REST indicated that REST might function on reprogramming in NT embryos by inhibiting TGFβ pathway. Further results showed that the developmental failure of REST-inhibited NT embryos could be rescued by treatment of SB431542, an inhibitor of TGFβ pathway. Thus, REST is a newly discovered transcription factor that is required for NT-mediated nuclear reprogramming.

Collaboration


Dive into the Bingteng Xie's collaboration.

Top Co-Authors

Avatar

Zhonghua Liu

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qingran Kong

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jingyu Li

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shichao Liu

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiaqiang Wang

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tianqing Huang

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Renyue Wei

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yanjun Huan

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Juan Wang

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kui Hu

Northeast Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge