Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingwen Hu is active.

Publication


Featured researches published by Bingwen Hu.


Journal of Materials Chemistry | 2015

Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries

Chao Li; Taiqiang Chen; Weijing Xu; Xiaobing Lou; Likun Pan; Qun Chen; Bingwen Hu

Mesoporous nanostructured Co3O4 was prepared by the direct pyrolysis of a Co-based metal organic framework (MOF) template at a relatively low temperature rather than a high temperature. When tested as an anode material for lithium-ion batteries (LIBs), this porous Co3O4 exhibited a greatly enhanced performance of lithium storage. The capacity of the porous Co3O4 retained 913 mA h g−1 after 60 cycles at a current rate of 200 mA g−1. Excellent rate capability was also achieved. We also found out that the Co3O4 prepared from the MOF template at a relatively low temperature has better electrochemical performance than that prepared at high temperature.


Physical Chemistry Chemical Physics | 2010

Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR

Lei Chen; Qiang Wang; Bingwen Hu; Olivier Lafon; Julien Trébosc; Feng Deng; Jean-Paul Amoureux

A Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) method is proposed for measuring hetero-nuclear dipolar couplings between two different spin-1/2 nuclei, under fast magic-angle spinning. The hetero-nuclear dipolar couplings are restored by employing the SR4 sequence, which requires the rf-field strength to be only twice the spinning frequency. The S-REDOR experiment is extended to S-RESPDOR (Symmetry-based Resonance-Echo Saturation-Pulse DOuble-Resonance) for determining dipolar coupling between a spin-1/2 nucleus (e.g.(13)C) and (14)N. It is demonstrated that S-REDOR and S-RESPDOR methods suppress efficiently the homo-nuclear dipolar interaction of the irradiated nucleus and benefit from high robustness to the rf-field inhomogeneity, chemical shielding and dipolar truncation. Therefore, these methods allow the measurement of (13)C/(14,15)N distances, with (13)C observation, in uniformly (13)C-labeled samples. Furthermore, we provide analytical solutions for the S-REDOR and S-RESPDOR dephasing curves. These solutions facilitate the measurement of hetero-nuclear distances from experimental data.


ACS Applied Materials & Interfaces | 2016

High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery

Chao Li; Xiaobing Lou; Ming Shen; Xiaoshi Hu; Zhi Guo; Yong Wang; Bingwen Hu; Qun Chen

We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.


Journal of Physical Chemistry A | 2009

Indirect Detection via Spin-1/2 Nuclei in Solid State NMR Spectroscopy: Application to the Observation of Proximities between Protons and Quadrupolar Nuclei

Olivier Lafon; Qiang Wang; Bingwen Hu; Filipe Vasconcelos; Julien Trébosc; Sylvain Cristol; Feng Deng; Jean-Paul Amoureux

We present a comprehensive comparison of through-space heteronuclear correlation techniques for solid state NMR, combining indirect detection and single-channel recoupling method. These techniques, named D-HMQC and D-HSQC, do not suffer from dipolar truncation and can be employed to correlate quadrupolar nuclei with spin-1/2 nuclei. The heteronuclear dipolar couplings are restored under magic-angle spinning by applying supercycled symmetry-based pulse sequences (SR412) or simultaneous frequency and amplitude modulation (SFAM). The average Hamiltonian theory (AHT) of these recoupling methods is developed. These results are applied to analyze the performances of D-HMQC and D-HSQC sequences. It is shown that, whatever the magnitude of spin interations, D-HMQC experiment offers larger efficiency and higher robustness than D-HSQC. Furthermore, the spectral resolution in both dimensions of proton detected two-dimensional D-HMQC and D-HSQC spectra can be enhanced by applying recently introduced symmetry-based homonuclear dipolar decoupling schemes that cause a z-rotation of the spins. This is demonstrated by 1H-13C and 1H-23Na correlation experiments on l-histidine and NaH2PO4, respectively. The two-dimensional heteronuclear 1H-23Na correlation spectrum yields the assignment of 23Na resonances of NaH2PO4. This assignment is corroborated by first-principles calculations.


Journal of Magnetic Resonance | 2011

Broad-band homo-nuclear correlations assisted by 1H irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS frequencies

Bingwen Hu; Oliver Lafon; Julien Trébosc; Qun Chen; Jean-Paul Amoureux

We propose a new broadband second-order proton-assisted (13)C-(13)C correlation experiment, SHANGHAI. The (13)C-(13)C magnetization transfer is promoted by (1)H irradiation with interspersed four phases super-cycling. This through-space homo-nuclear sequence only irradiates on the proton channel during the mixing time. SHANGHAI benefits from a large number of modulation sidebands, hence leading to a large robustness with respect to chemical shift differences, which permits its use in a broad MAS frequency range. At ultra-fast MAS (ν(R) 60 kHz), SHANGHAI is only efficient when the amplitude of (1)H recoupling rf-field is close to half the spinning speed (ν(1) ≈ ν(R)/2). However, at moderate to fast MAS (ν(R)=20-35 kHz), SHANGHAI is efficient at any rf-power level larger than ν(1) ≈ 10 kHz, which simultaneously permits avoiding excessive heating of bio-molecules, and using large sample volumes. We show that SHANGHAI can be employed at the very high magnetic field of 23.5 T and then allows the observation of correlation between (13)C nuclei, even if their resonance frequencies differ by more than 38 kHz.


Journal of Materials Chemistry | 2016

The organic-moiety-dominated Li+ intercalation/deintercalation mechanism of a cobalt-based metal–organic framework

Chao Li; Xiaoshi Hu; Xiaobing Lou; Lijuan Zhang; Yong Wang; Jean-Paul Amoureux; Ming Shen; Qun Chen; Bingwen Hu

Metal–organic frameworks (MOFs) have advanced many application fields due to their intriguing structure. However, the application of MOFs in lithium-ion batteries (LIBs) is severely hindered by the lack of a detailed insight into the delithiation and lithiation behaviors of MOFs. This study employs soft X-ray spectroscopy and high-resolution solid-state NMR techniques to study the electrochemical process of a seashell-like Co-based MOF. These experiments demonstrate that Li-ions are intercalated to the carboxyl groups and benzene rings of this MOF during cycling, accompanied by the distortion of CoO6 octahedral sites. Furthermore, the Co-MOF employing this organic-moiety-dominated intercalation/deintercalation mechanism exhibits high initial coulombic efficiency (80.4%) and unprecedented long-term cyclic stability (1021 mA h g−1 at 100 mA g−1 after 200 cycles; 601 mA h g−1 at 500 mA g−1 after 700 cycles; 435 mA h g−1 at 1 A g−1 after 1000 cycles) when evaluated as the anode material in LIBs. To our knowledge, this is the longest cycle life ever reported for a MOF-based lithium ion battery anode.


Journal of Magnetic Resonance | 2012

Broadband finite-pulse radio-frequency-driven recoupling (fp-RFDR) with (XY8)41 super-cycling for homo-nuclear correlations in very high magnetic fields at fast and ultra-fast MAS frequencies

Ming Shen; Bingwen Hu; Oliver Lafon; Julien Trébosc; Qun Chen; Jean-Paul Amoureux

We demonstrate that inter-residue (13)C-(13)C proximities (of about 380 pm) in uniformly (13)C-labeled proteins can be probed by applying robust first-order recoupling during several milliseconds in single-quantum single-quantum dipolar homo-nuclear correlation (SQ-SQ D-HOMCOR) 2D experiments. We show that the intensity of medium-range homo-nuclear correlations in these experiments is enhanced using broadband first-order finite-pulse radio-frequency-driven recoupling (fp-RFDR) NMR sequence with a nested (XY8)4(1) super-cycling. The robustness and the efficiency of the fp-RFDR-(XY8)4(1) method is demonstrated at high magnetic field (21.1T) and high Magic-Angle Spinning (MAS) speeds (up to 60 kHz). The introduced super-cycling, formed by combining phase inversion and a global four-quantum phase cycle, improves the robustness of fp-RFDR to (i) chemical shift anisotropy (CSA), (ii) spread in isotropic chemical shifts, (iii) rf-inhomogeneity and (iv) hetero-nuclear dipolar couplings for long recoupling times. We show that fp-RFDR-(XY8)4(1) is efficient sans (1)H decoupling, which is beneficial for temperature-sensitive biomolecules. The efficiency and the robustness of fp-RFDR-(XY8)4(1) is investigated by spin dynamics numerical simulations as well as solid-state NMR experiments on [U-(13)C]-L-histidine·HCl, a tetra-peptide (Fmoc-[U-(13)C,(15)N]-Val-[U-(13)C,(15)N]-Ala-[U-(13)C,(15)N]-Phe-Gly-t-Boc) and Al(PO(3))(3).


Physical Chemistry Chemical Physics | 2011

Measurement of 13C–1H dipolar couplings in solids by using ultra-fast magic-angle spinning NMR spectroscopy with symmetry-based sequences

Qiang Wang; Xingyu Lu; Olivier Lafon; Julien Trébosc; Feng Deng; Bingwen Hu; Qun Chen; Jean-Paul Amoureux

We show that (13)C-(1)H dipolar couplings in fully protonated organic solids can be measured by applying a Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) experiment at ultra-fast Magic-Angle Spinning (MAS). The (13)C-(1)H dipolar couplings are recovered by using the R12 recoupling scheme, while the interference of (1)H-(1)H dipolar couplings are suppressed by the symmetry properties of this sequence and the use of high MAS frequency (65 kHz). The R12 method is especially advantageous for large (13)C-(1)H dipolar interactions, since the dipolar recoupling time can be incremented by steps as short as one rotor period. This allows a fine sampling for the rising part of the dipolar dephasing curve. We demonstrate experimentally that one-bond (13)C-(1)H dipolar coupling in the order of 22 kHz can be accurately determined. Furthermore, the proposed method allows a rapid evaluation of the dipolar coupling by fitting the S-REDOR dipolar dephasing curve with an analytical expression.


Dalton Transactions | 2012

A facile route for preparing a mesoporous palladium coordination polymer as a recyclable heterogeneous catalyst

Siyong Zhang; Qinghua Liu; Ming Shen; Bingwen Hu; Qun Chen; Hexing Li; Jean-Paul Amoureux

To overcome the separation difficulty of the palladium-based homogeneous catalyst, the palladium complex can be anchored on various supports such as silica, polymers and nanoparticles. For the same purpose, we describe a general and facile method to immobilize palladium bis(phosphine) complexes on the basis of the technique widely used for metal-organic framework (MOF) synthesis, yielding a mesoporous coordination polymer palladium-CP1. Although palladium complexes are generally not stable enough to allow further manipulation, we succeeded in preparation of a palladium coordination polymer without by-product Pd clusters or nanoparticles. The fresh palladium-CP1 catalyst exhibits a yield close to 55% for tolane at room temperature and 24 h in Sonogashira coupling of iodobenzene and phenylacetylene, as compared with a yield of 89% for its homogeneous counterpart [Pd(PPh(3))(2)Cl(2)]. Furthermore, this catalyst is stable enough to be reused more than four times with no Pd and Zn leaching. Therefore this new immobilization method offers great promise for the produce of recyclable palladium heterogeneous catalysts with higher activity and higher thermal and chemical stability in the future.


Journal of Materials Chemistry | 2017

Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance

Xiaoshi Hu; Chao Li; Xiaobing Lou; Qi Yang; Bingwen Hu

The controllable synthesis and tailoring of the structure of metal oxide electrodes to achieve high rate capability and stability still remain formidable challenges. In this paper, a room-temperature solid–solid transformation route was introduced for the fabrication of a hierarchically structured porous CuO octahedron (HPCO) electrode by treating a copper metal–organic framework template, namely, Cu-BTC, with an alkaline solution. The HPCOs substantially inherited the morphology and size of the precursor Cu-BTC and were constructed by the assembly of many ultrathin nanosheets with average lateral sizes of ca. 250 nm. When acting as a host for the storage of Li+ ions, the as-fabricated HPCO electrode exhibited unprecedented performance that benefited from its advantageous structural features, with an ultrahigh capacity of 1201 mA h g−1 and superb high-rate performance with excellent cycling stability (1062, 615, and 423 mA h g−1 at 0.5, 2, and 5 A g−1, after 200, 400, and 400 repeated cycles, respectively). It is noteworthy that a surface redox pseudocapacitive effect contributed significantly to the high capacity and high rate of Li-ion storage of the HPCO electrode. This encouraging result may accelerate the further development of LIBs by a smart strategy for the micro/nanoengineering of metal oxide-based electrode materials.

Collaboration


Dive into the Bingwen Hu's collaboration.

Top Co-Authors

Avatar

Qun Chen

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ming Shen

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaobing Lou

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Chao Li

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoshi Hu

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Lafon

Institut Universitaire de France

View shared research outputs
Top Co-Authors

Avatar

Feng Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Likun Pan

East China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge