Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingyao Tan is active.

Publication


Featured researches published by Bingyao Tan.


Investigative Ophthalmology & Visual Science | 2016

Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses.

Vivian Choh; Akshay Gurdita; Bingyao Tan; Ratna Prasad; Kostadinka Bizheva; Karen M. Joos

Purpose Moderately elevated intraocular pressure (IOP) is a risk factor for open-angle glaucoma. Some patients suffer glaucoma despite clinically measured normal IOPs. Fluctuations in IOP may have a significant role since IOPs are higher during sleep and inversion activities. Controlled transient elevations of IOPs in rats over time lead to optic nerve structural changes that are similar to the early changes observed in constant chronic models of glaucoma. Because early intervention decreases glaucoma progression, this study was done to determine if early physiological changes to the retina could be detected with noninvasive electrophysiological and optical imaging tests during moderately elevated IOP. Methods Intraocular pressures were raised to moderately high levels (35 mm Hg) in one eye of Sprague-Dawley rats while the other (control) eye was untreated. One group of rats underwent scotopic threshold response (STR) and electroretinogram (ERG) testing, while another 3 groups underwent optical coherence tomography (OCT) imaging, Western blot, or histologic evaluation. Results The amplitudes of the STR and ERG responses in eyes with moderately elevated IOPs were enhanced compared to the values before IOP elevation, and compared to untreated contralateral eyes. Structural changes to the optic nerve also occurred during IOP elevation. Conclusions Although ischemic IOP elevations are well-known to globally reduce components of the scotopic ERG, acute elevation in rats to levels often observed in untreated glaucoma patients caused an increase in these parameters. Further exploration of these phenomena may be helpful in better understanding the mechanisms mediating early retinal changes during fluctuating or chronically elevated IOP.


Investigative Ophthalmology & Visual Science | 2016

In Vivo Imaging and Morphometry of the Human Pre-Descemet's Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography.

Kostadinka Bizheva; Lacey Haines; Erik Mason; Benjamin MacLellan; Bingyao Tan; Denise Hileeto; Luigina Sorbara

PURPOSE To visualize in vivo and quantify the thickness of the posterior corneal layers: the acellular pre-Descemets layer (PDL), Descemets membrane (DM), and endothelium (END) in healthy subjects, using ultrahigh-resolution optical coherence tomography (UHR-OCT). METHODS A research-grade, 800-nm UHR-OCT system with 0.95-μm axial resolution in corneal tissue was used to image in vivo the posterior cornea in healthy subjects. The system offers approximately 98 dB sensitivity for 680 μW optical power incident on the cornea and 34,000 A-scans/s image acquisition rate. This study comprised 20 healthy subjects, aged 20 to 60 years. The thickness of the PDL, DM, and END layers was measured both with a custom, automatic segmentation algorithm and manually. RESULTS The boundaries and structure of the posterior corneal layers were clearly visible in the UHR-OCT images. The average thickness was measured to be 6.6 ± 1.4 μm (PDL), 10.4 ± 2.9 μm (DM), and 4.8 ± 0.4 μm (END), which agrees well with published data from ex vivo studies. Both the END and DM thickness showed minor spatial variations, whereas the PDL showed up to 2× thickness change for different locations on the same cross-sectional corneal image or over the entire imaged region of the cornea. CONCLUSIONS Our data indicate that all three layers of the posterior cornea can be clearly visualized in vivo and their thicknesses measured precisely with UHR-OCT. Although the PDL thickness showed large spatial variations, the thickness of the DM and END layers was consistent over the entire imaged region of the cornea.


Investigative Ophthalmology & Visual Science | 2017

Correlation of Visually Evoked Functional and Blood Flow Changes in the Rat Retina Measured With a Combined OCT+ERG System

Bingyao Tan; Erik Mason; Benjamin MacLellan; Kostadinka Bizheva

Purpose To correlate visually evoked functional and blood flow changes in the rat retina measured simultaneously with a combined optical coherence tomography and electroretinography system (OCT+ERG). Methods Male Brown Norway (n = 6) rats were dark adapted and anesthetized with ketamine/xylazine. Visually evoked changes in the retinal blood flow (RBF) and functional response were measured simultaneously with an OCT+ERG system with 3-μm axial resolution in retinal tissue and 47-kHz image acquisition rate. Both single flash (10 and 200 ms) and flicker (10 Hz, 20% duty cycle, 1- and 2-second duration) stimuli were projected onto the retina with a custom visual stimulator, integrated into the OCT imaging probe. Total axial RBF was calculated from circular Doppler OCT scans by integrating over the arterial and venal flow. Results Temporary increase in the RBF was observed with the 10- and 200-ms continuous stimuli (∼1% and ∼4% maximum RBF change, respectively) and the 10-Hz flicker stimuli (∼8% for 1-second duration and ∼10% for 2-second duration). Doubling the flicker stimulus duration resulted in ∼25% increase in the RBF peak magnitude with no significant change in the peak latency. Single flash (200 ms) and flicker (10 Hz, 1 second) stimuli of the same illumination intensity and photon flux resulted in ∼2× larger peak RBF magnitude and ∼25% larger RBF peak latency for the flicker stimulus. Conclusions Short, single flash and flicker stimuli evoked measureable RBF changes with larger RBF magnitude and peak latency observed for the flicker stimuli.


Biomedical Optics Express | 2017

Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas

Kostadinka Bizheva; Bingyao Tan; Benjamin MacLelan; Olivera Kralj; Mojtaba Hajialamdari; Denise Hileeto; Luigina Sorbara

Corneal degenerative conditions such as keratoconus (KC) cause progressive damage to the anterior corneal tissue and eventually severely compromise visual acuity. The ability to visualize corneal tissue damage in-vivo at cellular or sub-cellular level at different stages of development of KC and other corneal diseases, can aid the early diagnostics as well as the development of more effective treatment approaches for various corneal pathologies, including keratoconus. Here, we present the optical design of an optical coherence tomography system that can achieve 0.95 µm axial resolution in biological tissue and provide test results for the systems spatial resolution and sensitivity. Corneal images acquired in-vivo with this system from healthy and keratoconic human subjects reveal the cellular and sub-cellular structure of the corneal epithelium, as well as the normal and abnormal structure of the Bowmans membrane and the anterior corneal stroma.


PLOS ONE | 2018

Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system

Bingyao Tan; Benjamin MacLellan; Erik Mason; Kostadinka Bizheva

Acute elevation of intraocular pressure (IOP) to ischemic and non-ischemic levels can cause temporary or permanent changes in the retinal morphology, function and blood flow/blood perfusion. Previously, such changes in the retina were assessed separately with different methods in clinical studies and animal models. In this study, we used a combined OCT+ ERG system in combination with Doppler OCT and OCT angiography (OCTA) imaging protocols, in order to evaluate simultaneously and correlate changes in the retinal morphology, the retinal functional response to visual stimulation, and the retinal blood flow/blood perfusion, associated with IOP elevation to ischemic and non-ischemic levels in rats. Results from this study suggest that the inner retina responds faster to IOP elevation to levels greater than 30 mmHg with significant reduction of the total retinal blood flow (TRBF), decrease of the capillaries’ perfusion and reduction of the ON bipolar cells contribution to the ERG traces. Furthermore, this study showed that ischemic levels of IOP elevation cause an additional significant decrease in the ERG photoreceptor response in the posterior retina. Thirty minutes after IOP normalization, retinal morphology, blood flow and blood perfusion recovered to baseline values, while retinal function did not recover completely.


Investigative Ophthalmology & Visual Science | 2017

The Effect of Acutely Elevated Intraocular Pressure on the Functional and Blood Flow Responses of the Rat Retina to Flicker Stimulation

Bingyao Tan; Benjamin MacLellan; Erik Mason; Kostadinka Bizheva

Purpose To evaluate the effect of acutely elevated intraocular pressure (IOP) on the functional and blood flow responses of the rat retina to flicker stimulation. Methods Brown Norway (n = 15) rats were dark-adapted before ketamine/xylazine anesthesia. IOP was raised acutely in one eye to ∼45 mm Hg with a vascular loop. In 11 rats, white light flicker stimulus (10 Hz, 2 seconds duration, 0.80 log scotopic cd·s/m2) was applied before and during IOP elevation, and 10 minutes after loop removal. Changes in the total retinal blood flow (TRBF) and retinal function induced by the visual stimulus were measured simultaneously with a combined optical coherence tomography (OCT) + electroretinography (ERG) system. Systemic blood pressure was measured in the remaining four rats frequently from 10 to 90 minutes post anesthesia injection. Results The systemic blood pressure remained at 99 ± 4 mm Hg throughout the measurements (n = 4). Under normal IOP, the TRBF was 5.6 ± 1.9 μL/min, and the average retinal blood vessel size (BVS) in the vicinity of the optic nerve head (ONH) was 44.1 ± 4.5 μm. During IOP elevation, the TRBF was significantly lower (3.8 ± 1.2 μL/min, P < 0.01) and the BVS was significantly smaller (35.1 ± 2.6 μm, P < 0.01). Both TRBF and BVS returned to baseline within ∼10 minutes from removal of the vascular loop. The flicker-induced TRBF change measured under normal IOP (6.0 ± 3.3%) was reduced significantly to 0.1 ± 0.3% (P < 0.01) during IOP elevation, and recovered to 5.9 ± 1.7% within 10 minutes after loop removal. During IOP elevation, the magnitude of the ERG second harmonic component (SHC) decreased to 55% of its baseline value (P < 0.01) and remained significantly smaller than baseline (P < 0.01). Conclusions Acute IOP elevation to 45 mm Hg caused suppression of the retinal functional and TRBF response to flicker stimulation.


Biomedical Optics Express | 2017

In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography

Kostadinka Bizheva; Bingyao Tan; Benjamin MacLellan; Zohreh Hosseinaee; Erik Mason; Denise Hileeto; Luigina Sorbara

A research-grade OCT system was used to image in-vivo and without contact with the tissue, the cellular structure and microvasculature of the healthy human corneo-scleral limbus. The OCT system provided 0.95 µm axial and 4 µm (2 µm) lateral resolution in biological tissue depending on the magnification of the imaging objective. Cross-sectional OCT images acquired tangentially from the inferior limbus showed reflective, loop-like features that correspond to the fibrous folds of the palisades of Vogt (POV). The high OCT resolution allowed for visualization of individual cells inside the limbal crypts, capillaries extending from the inside of the POVs fibrous folds and connecting to a lateral grid of micro-vessels located in the connective tissue directly below the POV, as well as reflections from individual red blood cells inside the capillaries. Difference in the reflective properties of the POV was observed among subjects of various pigmentation levels of the POV. Morphological features observed in the high resolution OCT images correlated well with histology. The ability to visualize the limbal morphology and microvasculature in-vivo at cellular level can aid the diagnostics and treatment of limbal stem cell dysfunction and dystrophies.


Proceedings of SPIE | 2015

Axial resolution improvement in spectral domain optical coherence tomography using a depth-adaptive maximum-a-posterior framework

Ameneh Boroomand; Bingyao Tan; Alexander Wong; Kostadinka Bizheva

The axial resolution of Spectral Domain Optical Coherence Tomography (SD-OCT) images degrades with scanning depth due to the limited number of pixels and the pixel size of the camera, any aberrations in the spectrometer optics and wavelength dependent scattering and absorption in the imaged object [1]. Here we propose a novel algorithm which compensates for the blurring effect of these factors of the depth-dependent axial Point Spread Function (PSF) in SDOCT images. The proposed method is based on a Maximum A Posteriori (MAP) reconstruction framework which takes advantage of a Stochastic Fully Connected Conditional Random Field (SFCRF) model. The aim is to compensate for the depth-dependent axial blur in SD-OCT images and simultaneously suppress the speckle noise which is inherent to all OCT images. Applying the proposed depth-dependent axial resolution enhancement technique to an OCT image of cucumber considerably improved the axial resolution of the image especially at higher imaging depths and allowed for better visualization of cellular membrane and nuclei. Comparing the result of our proposed method with the conventional Lucy-Richardson deconvolution algorithm clearly demonstrates the efficiency of our proposed technique in better visualization and preservation of fine details and structures in the imaged sample, as well as better speckle noise suppression. This illustrates the potential usefulness of our proposed technique as a suitable replacement for the hardware approaches which are often very costly and complicated.


Translational Vision Science & Technology | 2018

Comparative Study of Optical Coherence Tomography Angiography and Phase-Resolved Doppler Optical Coherence Tomography for Measurement of Retinal Blood Vessels Caliber

Zohreh Hosseinaee; Bingyao Tan; Adam Radek Martinez; Kostadinka Bizheva

Purpose To compare the accuracy of Doppler optical coherence tomography (DOCT) and OCT angiography (OCTA) for measuring retinal blood vessel caliber at different flow rates. Methods A research-grade 1060-nm OCT system with 3.5-μm axial resolution in retinal tissue and 92,000 A scan/s image acquisition rate was used in this study. DOCT and OCTA measurements were acquired both from a flow phantom and in vivo from retinal blood vessels in six male Brown Norway rats. The total retinal blood flow (TRBF) was modified from baseline to 70% and 20% of baseline by reducing the ocular perfusion pressure (OPP). The retinal blood vessel caliber (RBVC) was measured from OCTA and DOCT images. The caliber measurements were conducted by two separate graders using a custom MATLAB-based image processing algorithm. Results The RBVC measured with OCTA and DOCT for normal blood flow rates were not significantly different (56.69 ± 12.17 and 57.17 ± 9.46 μm, P = 0.27, respectively). However, significant differences were detected when TRBF was reduced to 70% (55.69 ± 11.56 vs. 50.62 ± 8.85 μm, P < 0.01) and 20% (50.29 ± 9.29 vs. 44.88 ± 7.13 μm, P < 0.01) of baseline. Conclusions Reduced TRBF resulted in inaccuracy of the RBVC measurements with DOCT in both the phantom and animal study. This result suggests that OCTA is a more accurate tool for RBVC evaluation when applied to retinal diseases associated with reduced TRBF, such as glaucoma and diabetic retinopathy. Translational Relevance Results from this study are directly applicable to clinical studies of retinal blood flow measured with OCTA and DOCT.


Scientific Reports | 2018

Morphological and functional changes in the rat retina associated with 2 months of intermittent moderate intraocular pressure elevation

Bingyao Tan; Akshay Gurdita; Vivian Choh; Karen M. Joos; Ratna Prasad; Kostadinka Bizheva

Morphological and functional changes in the rat retina and optic nerve head (ONH), associated with 8 weeks of intermittent moderately elevated intraocular pressure (IOP) were measured with a combined ultrahigh resolution optical coherence tomography (UHR-OCT) and electroretinography (ERG) system. The IOP of male Sprague-Dawley rats was raised in one eye to ~35 mmHg for 1 hour/day on 6 days each week using vascular loops. Single-flash ERG traces and volumetric UHR-OCT images of the ONH were acquired from both eyes before, during and after IOP elevations at weeks 1, 5 and 9 of the study. The UHR-OCT images showed depression of the posterior eye around the ONH during the IOP elevations, the magnitude of which increased significantly from week 1 to week 9 (p = 0.01). The ERG a-wave and b-wave amplitudes increased temporarily during IOP elevations and returned to normal ~30 minutes after loop removal. Recurrent intermittent IOP spikes caused > 30% decrease in the ERG a-wave and b-wave amplitudes measured during the IOP elevations over the course of 2 months. This study suggests that recurrent, relatively short-duration IOP spikes for extended period of time are associated with peri-ONH tissue hypercompliance and reduced retinal functional response to visual stimulation during acute IOP elevation.

Collaboration


Dive into the Bingyao Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Mason

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivian Choh

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge