Binh Thai Pham
Gujarat Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Binh Thai Pham.
International Journal of Digital Earth | 2016
Dieu Tien Bui; Binh Thai Pham; Quoc Phi Nguyen; Nhat-Duc Hoang
ABSTRACT This study represents a hybrid intelligence approach based on the differential evolution optimization and Least-Squares Support Vector Machines for shallow landslide prediction, named as DE–LSSVMSLP. The LSSVM is used to establish a landslide prediction model whereas the DE is adopted to search the optimal tuning parameters of the LSSVM model. In this research, a GIS database with 129 historical landslide records in the Quy Hop area (Central Vietnam) has been collected to establish the hybrid model. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to assess the performance of the newly constructed model. Experimental results show that the proposed model has high performances with approximately 82% of AUCs on both training and validating datasets. The model’s results were compared with those obtained from other methods, Support Vector Machines, Multilayer Perceptron Neural Networks, and J48 Decision Trees. The result comparison demonstrates that the DE–LSSVMSLP deems best suited for the dataset at hand; therefore, the proposed model can be a promising tool for spatial prediction of rainfall-induced shallow landslides for the study area.
Environmental Modelling and Software | 2017
Kamran Chapi; Vijay P. Singh; Ataollah Shirzadi; Himan Shahabi; Dieu Tien Bui; Binh Thai Pham; Khabat Khosravi
Abstract A new artificial intelligence (AI) model, called Bagging-LMT - a combination of bagging ensemble and Logistic Model Tree (LMT) - is introduced for mapping flood susceptibility. A spatial database was generated for the Haraz watershed, northern Iran, that included a flood inventory map and eleven flood conditioning factors based on the Information Gain Ratio (IGR). The model was evaluated using precision, sensitivity, specificity, accuracy, Root Mean Square Error, Mean Absolute Error, Kappa and area under the receiver operating characteristic curve criteria. The model was also compared with four state-of-the-art benchmark soft computing models, including LMT, logistic regression, Bayesian logistic regression, and random forest. Results revealed that the proposed model outperformed all these models and indicate that the proposed model can be used for sustainable management of flood-prone areas.
Journal of The Indian Society of Remote Sensing | 2017
Binh Thai Pham; Dieu Tien Bui; Ha Viet Pham; Hung Quoc Le; Indra Prakash; M. B. Dholakia
AbstractLandslide hazard assessment at the Mu Cang Chai district; Yen Bai province (Viet Nam) has been done using Random SubSpace fuzzy rules based Classifier Ensemble (RSSCE) method and probability analysis of rainfall data. RSSCE which is a novel classifier ensemble method has been applied to predict spatially landslide occurrences in the area. Prediction of temporally landslide occurrences in the present study has been done using rainfall data for the period 2008–2013. A total of fifteen landslide influencing factors namely slope, aspect, curvature, plan curvature, profile curvature, elevation, land use, lithology, rainfall, distance to faults, fault density, distance to roads, road density, distance to rivers, and river density have been utilized. The result of the analysis shows that RSSCE and probability analysis of rainfall data are promising methods for landslide hazard assessment. Finally, landslide hazard map has been generated by integrating spatial prediction and temporal probability analysis of landslides for the land use planning and landslide hazard management.
Environmental Earth Sciences | 2017
Binh Thai Pham; Dieu Tien Bui; Indra Prakash; Long Hoang Nguyen; M. B. Dholakia
Abstract Landslide susceptibility assessment using GIS has been done for part of Uttarakhand region of Himalaya (India) with the objective of comparing the predictive capability of three different machine learning methods, namely sequential minimal optimization-based support vector machines (SMOSVM), vote feature intervals (VFI), and logistic regression (LR) for spatial prediction of landslide occurrence. Out of these three methods, the SMOSVM and VFI are state-of-the-art methods for binary classification problems but have not been applied for landslide prediction, whereas the LR is known as a popular method for landslide susceptibility assessment. In the study, a total of 430 historical landslide polygons and 11 landslide affecting factors such as slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall were selected for landslide analysis. For validation and comparison, statistical index-based methods and the receiver operating characteristic curve have been used. Analysis results show that all these models have good performance for landslide spatial prediction but the SMOSVM model has the highest predictive capability, followed by the VFI model, and the LR model, respectively. Thus, SMOSVM is a better model for landslide prediction and can be used for landslide susceptibility mapping of landslide-prone areas.
Environmental Earth Sciences | 2018
Binh Thai Pham; Dieu Tien Bui; Indra Prakash
A hybrid Bagging based Support Vector Machines (BSVM) method, which is a combination of Bagging Ensemble and Support Vector Machine (SVM) classifier, was proposed for the spatial prediction of landslides at the district of Mu Cang Chai, Viet Nam. In the present study, 248 past landslides and fifteen geo-environmental factors (curvature, elevation, distance to rivers, slope, aspect, river density, plan curvature, distance to faults, profile curvature, fault density, lithology, distance to roads, rainfall, land use, and road density) were considered for the model construction. Different evaluation criteria were applied to validate the proposed hybrid model such as statistical index-based methods and area under the receiver operating characteristic curve (AUC). The single SVM and the Naïve Bayes Trees (NBT) models were selected for comparison. Based on the AUC values, the proposed hybrid model BSVM (0.812) outperformed the SVM (0.804) and NBT (0.8) models. Thus, the BSVM is a promising and better method for landslide prediction.
Science of The Total Environment | 2018
Khabat Khosravi; Binh Thai Pham; Kamran Chapi; Ataollah Shirzadi; Himan Shahabi; Inge Revhaug; Indra Prakash; Dieu Tien Bui
Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas.
Geotechnical and Geological Engineering | 2017
Binh Thai Pham; Dieu Tien Bui; Indra Prakash
In this study, we have evaluated and compared prediction capability of Bagging Ensemble Based Alternating Decision Trees (BADT), Logistic Regression (LR), and J48 Decision Trees (J48DT) for landslide susceptibility mapping at part of the Uttarakhand State (India). The BADT method has been proposed in the present study which is a novel hybrid machine learning ensemble approach of bagging ensemble and alternating decision trees. The J48DT is a relative new machine learning technique which has been applied only in few landslide studies, and the LR is known as a popular landslide susceptibility model. For the model studies, a spatial database of 930 historical landslide events and 15 landslide affecting factors have been collected and analyzed. This database has been used to build and validate the landslide models namely BADT, LR and J48DT Predictive capability of these models has been validated and compared using statistical analyzing methods and Receiver Operating Characteristic (ROC) curve. Results show that these three landslide models (BADT, LR and J48DT) performed well with the training dataset. However, using the validation dataset the BADT model has the highest prediction capability, followed by the LR model, and the J48DT model, respectively. This indicates that the BADT is a promising method which can be used for landslide susceptibility assessment also for other landslide prone areas.
Environmental Processes | 2017
Binh Thai Pham; Khabat Khosravi; Indra Prakash
Landslide susceptibility assessment has been conducted at the Pauri Garhwal area of Uttarakhand state, India, an area affected by numerous landslides causing significant losses of life, infrastructure and property every year. Decision tree-based machine learning methods, namely Random Forest (RF), Logistic Model Trees (LMT), Best First Decision Trees (BFDT) and Classification and Regression Trees (CART) have been used, and results are compared herein for proper spatial prediction of landslides. Analysis of the data has been done considering sixteen conditioning factors (i.e., slope angle, elevation, slope aspect, profile curvature, land cover, curvature, lithology, plan curvature, soil, distance to lineaments, lineament density, distance to roads, road density, distance to river, river density and rainfall), and 1295 historical landslide polygons. Models were validated and compared using Receiver Operating Characteristics (ROC) curve and statistical indices. The results show that the RF model has the highest predictive capability, followed by the LMT, BFDT and CART models, respectively, and indicate that although all four methods have shown good results, the performance of the RF method is the best for landslide spatial prediction.
Bulletin of Engineering Geology and the Environment | 2018
Binh Thai Pham; Abolfazl Jaafari; Indra Prakash; Dieu Tien Bui
The main aim of this study is to propose a novel hybrid intelligent model named MBSVM which is an integration of the MultiBoost ensemble and a support vector machine (SVM) for modeling of susceptibility of landslides in the Uttarakhand State, Northern India. Firstly, a geospatial database for the study area was prepared, which includes 391 historical landslides and 16 landslide-affecting factors. Then, the sensitivity of different combinations of these factors for modeling was validated using the forward elimination technique. The MBSVM landslide model was built using the datasets generated from the best selected factors and validated utilizing the area under the receiver operating characteristic (ROC) curve (AUC), statistical indexes, and the Wilcoxon signed-rank test. Results show that this novel hybrid model has good performance both in terms of goodness of fit with the training dataset (AUC = 0.972) and the capability to predict landslides with the testing dataset (AUC = 0.966). The efficiency of the proposed model was then validated by comparison with logistic regression (LR), a single SVM, and another hybrid model of the AdaBoost ensemble and an SVM (ABSVM). Comparison results show that the MBSVM outperforms the LR, single SVM, and hybrid ABSVM models. Thus, the proposed model is a promising and good alternative tool for landslide hazard assessment in landslide-prone areas.
Geocarto International | 2017
Binh Thai Pham; Indra Prakash
Abstract The purpose of this study was to investigate and compare the capabilities of four machine learning methods namely LogitBoost Ensemble (LBE), Fisher’s Linear Discriminate Analysis (FLDA), Logistic Regression (LR) and Support Vector Machines (SVM) to select the best method for landslide susceptibility mapping. A part of landslide prone area of Tehri Garhwal district of Uttarakhand state, India, was selected as a case study. Validation of models was carried out using statistical analysis, the chi square test and the Receiver Operating Characteristic (ROC) curve. Result analysis shows that the LBE has the highest prediction ability (AUC = 0.972) for landslide susceptibility mapping, followed by the SVM (0.945), the LR (0.873) and the FLDA (0.870), respectively. Therefore, the LBE is the best and a promising method in comparison to other three models for landslide susceptibility mapping.