Binita Pathak
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Binita Pathak.
Physics of Fluids | 2016
Binita Pathak; Saptarshi Basu
We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets. Published by AIP Publishing.
Physical Review E | 2016
Binita Pathak; Saptarshi Basu
Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70% by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70% by volume). The findings are portable to any similar bicomponent systems with differential volatility.
Journal of Applied Physics | 2015
Binita Pathak; Saptarshi Basu
Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure
Langmuir | 2016
Binita Pathak; Saptarshi Basu
Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell. Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets. Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscale pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.
Journal of Heat Transfer-transactions of The Asme | 2015
Binita Pathak; Apratim Sanyal; Saptarshi Basu
Experimental analyses of surface oscillations are reported in acoustically levitated, radiatively heated bicomponent droplets with one volatile and other being nonvolatile. Two instability pathways are observed: one being acoustically driven observed in low-vapor pressure fluid droplets and other being boiling driven observed in high-vapor pressure fluid droplets. The first pathway shows extreme droplets deformation and subsequent breakup by acoustic pressure and externally supplied heat. Also transition of instabilities from acoustically activated shape distortion regime to thermally induced boiling regime is observed with increasing concentration of volatile component in bicomponent droplets. Precursor phases of instabilities are investigated using Legendres polynomial.
Physical Chemistry Chemical Physics | 2016
Binita Pathak; Priti Xavier; Suryasarathi Bose; Saptarshi Basu
We report thermally induced rapid phase separation in PS/PVME polymer blends using a unique contact free droplet based architecture. De-mixing of homogeneous blends due to inter component dynamic asymmetry is aggravated by the externally supplied heat. Separation of polymer blends is usually investigated in the bulk which is a tedious process and requires several hours for completion. Alternatively, separation in droplet configuration reduces the process timescale by about 3-5 orders due to a constrained micron-sized domain [fast processing and high throughput] while maintaining similar separation morphologies as in the bulk. We observed the effect of heating rates on the phase separation length and timescales. Furthermore, the separation length scale can be precisely controlled across one order by simply tuning the heating rate. The methodology can be scaled up for applications ranging from surface patterning to pharmaceutics.
Archive | 2018
Binita Pathak; Ranganathan Kumar; Saptarshi Basu
Droplet break-up and atomization is ubiquitous in a plethora of industrial applications. Typical spray-based industrial processes such as surface coating, drying, ink-jet printing, powder and food processing involve a cluster of droplets or sprays exposed to specific environmental conditions (James et al. 2003; Basu et al. 2012). The fate of each drop is determined by various forces acting upon it which usually causes severe deformation and disintegration of the droplets. Interactions between multiple drops with the gas phase lead to drop collision, coalescence, and break-up, which determine the final drop size distribution in the spray.
Langmuir | 2018
Lijun T. Raju; Shubhankar Chakraborty; Binita Pathak; Saptarshi Basu
Spatially varying the ordering of colloids of multiple sizes at micro-nano scales finds application in different industrial processes including manufacturing of photonic crystals. In this work, we showcase a unique physics-based architecture through which we have been able to control the morphology of the precipitates evolving out of the drying of a contact-free droplet at micro to nano length scales. We show that by varying the relative concentration of the larger sized colloids, one can modulate evaporation, subsequent particle transport, and particle ordering at the droplet interface, thereby controlling the rates of certain instabilities like buckling. In this way, we have produced evaporation-induced self-assembly structures (devoid of any substrate effect) with striking topological and surface features. Furthermore, we proved that these instabilities can be further tuned using a measured amount of external heating through the alteration of the evaporation rates. Notwithstanding, we also quantified that the ordering of the mixed colloids varies, in a spatial sense, across the droplet surface, exhibiting unique patterns, porosity, and lattice arrangements, all at the nanoscale. The results assure that the fine-tuning of the macroscale parameters like heating rate and particle loading can be used to fine-tune the micro-nanoscale features in a droplet-based high-throughput bottom-up framework.
Langmuir | 2018
Lalit Bansal; Apratim Sanyal; Prasenjit Kabi; Binita Pathak; Saptarshi Basu
Evaporating sessile functional droplets act as the fundamental building block that controls the cumulative outcome of many industrial and biological applications such as surface patterning, 3D printing, photonic crystals, and DNA sequencing, to name a few. Additionally, a drying single sessile droplet forms a high-throughput processing technique using low material volume which is especially suitable for medical diagnosis. A sessile droplet also provides an elementary platform to study and analyze fundamental interfacial processes at various length scales ranging from macroscopically observable wetting and evaporation to microfluidic transport to interparticle forces operating at a nanometric length scale. As an example, to ascertain the quality of 3D printing we must understand the fundamental interfacial processes at the droplet scale. In this article, we review the coupled physics of evaporation flow-contact-line-driven particle transport in sessile colloidal droplets and provide methodologies to control the same. Through natural alterations in droplet vaporization, one can change the evaporative pattern and contact line dynamics leading to internal flow which will modulate the final particle assembly in a nontrivial fashion. We further show that control over particle transport can also be exerted by external stimuli which can be thermal, mechanical oscillations, vapor confinement (walled or a fellow droplet), or chemical (surfactant-induced) in nature. For example, significant augmentation of an otherwise evaporation-driven particle transport in sessile droplets can be brought about simply through controlled interfacial oscillations. The ability to control the final morphologies by manipulating the governing interfacial mechanisms in the precursor stages of droplet drying makes it perfectly suitable for fabrication-, mixing-, and diagnostic-based applications.
Langmuir | 2017
Binita Pathak; Sandeep Hatte; Saptarshi Basu
Evaporation dynamics of a particle-laden droplet has been a topic of interest in recent times owing to its widespread applications, ranging from surface patterning to drug delivery systems. The interplay of evaporation-induced internal flow dynamics, contact line dynamics, and nanoparticle self-assembly govern the morphologies of the residual structures. Fine-tuning of these residual structures is thus possible by controlling the governing parameters. A nanoparticle-laden sessile droplet placed on a hydrophobic substrate undergoes buckling phenomenon that results in a domelike structure with cavity on the surface. In the present work, it is shown that the addition of sodium dodecyl sulfate (SDS) surfactant in minute concentrations (0.005-0.02 wt %) can affect the contact line dynamics and subsequent buckling dynamics of a nanoparticle-laden droplet evaporating on a hydrophobic substrate. With increase in the initial SDS concentration, the morphologies of the residual structures show transition from a buckled dome structure to a flat flowerlike shape. Moreover, a critical SDS concentration (>0.0075 wt % in 20 wt % silica) is identified for the complete suppression of buckling instabilities. Last, the effects of droplet spreading on the surface crack dynamics are discussed.