Binks W. Wattenberg
University of Louisville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Binks W. Wattenberg.
The EMBO Journal | 2003
Stuart M. Pitson; Paul A.B. Moretti; Julia R. Zebol; Helen E. Lynn; Pu Xia; Mathew A. Vadas; Binks W. Wattenberg
Sphingosine kinase 1 is an agonist‐activated signalling enzyme that catalyses the formation of sphingosine 1‐phosphate, a lipid second messenger that has been implicated in a number of agonist‐driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist‐induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist‐mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1‐phosphate‐controlled signalling pathways.
Traffic | 2001
Binks W. Wattenberg; Trevor Lithgow
A class of integral membrane proteins, referred to as ‘tail‐anchored proteins’, are inserted into phospholipid bilayers via a single segment of hydrophobic amino acids at the C‐terminus, thereby displaying a large functional domain in the cytosol. This membrane attachment strategy allows eukaryotic cells to position a wide range of cytoplasmic activities close to the surface of an intracellular membrane. Tail‐anchored proteins often, but not always, demonstrate a selective distribution to specific intracellular organelles. This membrane‐specific distribution is required for the large number of targeting proteins that are tail‐anchored, but may or may not be critical for the numerous tail‐anchored pro‐apoptotic and anti‐apoptotic proteins of the Bcl‐2 family. Recent work has begun to address the mechanism for targeting tail‐anchored proteins to their resident membranes, but questions remain. What targeting signals determine each proteins intracellular location? Are there receptors for these signals and, if so, how do they function? What steps are required to integrate tail‐anchored proteins into the phospholipid bilayers? In this Traffic Interchange, we summarise what is known about tail‐anchored proteins, and outline the areas that are currently under study.
Journal of Lipid Research | 2006
Binks W. Wattenberg; Stuart M. Pitson; Daniel M. Raben
The sphingosine and diacylglycerol kinases form a superfamily of structurally related lipid signaling kinases. One of the striking features of these kinases is that although they are clearly involved in agonist-mediated signaling, this signaling is accomplished with only a moderate (and sometimes no) increase in the enzymatic activity of the enzymes. Here, we summarize findings that indicate that signaling by these kinases is strongly dependent on their localization to specific intracellular sites rather than on increases in enzyme activity. Both the substrates and products of these enzymes are bioactive lipids. Moreover, many of the metabolic enzymes that act on these lipids are found in specific organelles. Therefore, changes in the membrane localization of these signaling kinases have profound effects not only on the production of signaling lipid phosphates but also on the metabolism of the upstream signaling lipids.
Journal of Biological Chemistry | 2009
Abdullah Yalcin; Brian Clem; Alan Simmons; Andrew N. Lane; Kristin Nelson; Amy Clem; Erin Brock; Deanna Siow; Binks W. Wattenberg; Sucheta Telang; Jason Chesney
The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1–4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.
Traffic | 2007
Ted Kalbfleisch; Alex Cambon; Binks W. Wattenberg
Intracellular proteins with a carboxy‐terminal transmembrane domain and the amino‐terminus oriented toward the cytosol are known as ‘tail‐anchored’ proteins. Tail‐anchored proteins have been of considerable interest because several important classes of proteins, including the vesicle‐targeting/fusion proteins known as SNAREs and the apoptosis‐related proteins of the Bcl‐2 family, among others, utilize this unique membrane‐anchoring motif. Here, we use a bioinformatic technique to develop a comprehensive list of potentially tail‐anchored proteins in the human genome. Our final list contains 411 entries derived from 325 unique genes. We also analyzed both known and predicted tail‐anchored proteins with respect to the amino acid composition of the transmembrane segments. This analysis revealed a distinctive composition of the membrane anchor in SNARE proteins.
FEBS Letters | 1999
Billie Egan; Traude H. Beilharz; Rebecca George; Sandra Isenmann; Sabine Gratzer; Binks W. Wattenberg; Trevor Lithgow
Tail‐anchored proteins are inserted into intracellular membranes via a C‐terminal transmembrane domain. The topology of the protein is such that insertion must occur post‐translationally, since the insertion sequence is not available for membrane insertion until after translation of the tail‐anchored polypeptide is completed. Here, we show that the targeting information in one such tail‐anchored protein, translocase in the outer mitochondrial membrane 22, is contained in a short region flanking the transmembrane domain. An equivalent region is sufficient to specify the localisation of Bcl2 and SNARE proteins to the secretory membranes. We discuss the targeting process for directing members of this protein family to the secretory and mitochondrial membranes in vivo.
Journal of Biological Chemistry | 2012
Deanna Siow; Binks W. Wattenberg
Background: The yeast Orm1/2 proteins regulate ceramide biosynthesis. Results: Depletion of the mammalian Orm1/2 homologues, ORMDL1–3, eliminates the negative feedback of exogenous ceramide on ceramide biosynthesis in HeLa cells. Conclusion: ORMDL proteins are the primary regulators of ceramide biosynthesis in mammalian cells. Significance: Therapeutically manipulating levels of the pro-death lipid, ceramide, requires a molecular understanding of its regulation. The mammalian ORMDL proteins are orthologues of the yeast Orm proteins (Orm1/2), which are regulators of ceramide biosynthesis. In mammalian cells, ceramide is a proapoptotic signaling sphingolipid, but it is also an obligate precursor to essential higher order sphingolipids. Therefore levels of ceramide are expected to be tightly controlled. We tested the three ORMDL isoforms for their role in homeostatically regulating ceramide biosynthesis in mammalian cells. Treatment of cells with a short chain (C6) ceramide or sphingosine resulted in a dramatic inhibition of ceramide biosynthesis. This inhibition was almost completely eliminated by ORMDL knockdown. This establishes that the ORMDL proteins mediate the feedback regulation of ceramide biosynthesis in mammalian cells. The ORMDL proteins are functionally redundant. Knockdown of all three isoforms simultaneously was required to alleviate the sphingolipid-mediated inhibition of ceramide biosynthesis. The lipid sensed by the ORMDL-mediated feedback mechanism is medium or long chain ceramide or a higher order sphingolipid. Treatment of permeabilized cells with C6-ceramide resulted in ORMDL-mediated inhibition of the rate-limiting enzyme in sphingolipid biosynthesis, serine palmitoyltransferase. This indicates that C6-ceramide inhibition requires only membrane-bound elements and does not involve diffusible proteins or small molecules. We also tested the atypical sphingomyelin synthase isoform, SMSr, for its role in the regulation of ceramide biosynthesis. This unusual enzyme has been reported to regulate ceramide levels in the endoplasmic reticulum. We were unable to detect a role for SMSr in regulating ceramide biosynthesis. We suggest that the role of SMSr may be in the regulation of downstream metabolism of ceramide.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Jen Fu Lee; Sharon A. Gordon; Rosendo Estrada; Lichun Wang; Deanna Siow; Binks W. Wattenberg; David Lominadze; Menq Jer Lee
Sphingosine-1-phosphate (S1P) regulates various molecular and cellular events in cultured endothelial cells, such as cytoskeletal restructuring, cell-extracellular matrix interactions, and intercellular junction interactions. We utilized the venular leakage model of the cremaster muscle vascular bed in Sprague-Dawley rats to investigate the role of S1P signaling in regulation of microvascular permeability. S1P signaling is mediated by the S1P family of G protein-coupled receptors (S1P(1-5) receptors). S1P(1) and S1P(2) receptors, which transduce stimulatory and inhibitory signaling, respectively, are expressed in the endothelium of the cremaster muscle vasculature. S1P administration alone via the carotid artery was unable to protect against histamine-induced venular leakage of the cremaster muscle vascular bed in Sprague-Dawley rats. However, activation of S1P(1)-mediated signaling by SEW2871 and FTY720, two agonists of S1P(1), significantly inhibited histamine-induced microvascular leakage. Treatment with VPC 23019 to antagonize S1P(1)-regulated signaling greatly potentiated histamine-induced venular leakage. After inhibition of S1P(2) signaling by JTE-013, a specific antagonist of S1P(2), S1P was able to protect microvascular permeability in vivo. Moreover, endothelial tight junctions and barrier function were regulated by S1P(1)- and S1P(2)-mediated signaling in a concerted manner in cultured endothelial cells. These data suggest that the balance between S1P(1) and S1P(2) signaling regulates the homeostasis of microvascular permeability in the peripheral circulation and, thus, may affect total peripheral vascular resistance.
Journal of Lipid Research | 2010
Deanna Siow; Charles D. Anderson; Evgeny Berdyshev; Anastasia Skobeleva; Stuart M. Pitson; Binks W. Wattenberg
Sphingosine kinase 1 (SK1) produces sphingosine-1-phosphate (S1P), a potent signaling lipid. The subcellular localization of SK1 can dictate its signaling function. Here, we use artificial targeting of SK1 to either the plasma membrane (PM) or the endoplasmic reticulum (ER) to test the effects of compartmentalization of SK1 on substrate utilization and downstream metabolism of S1P. Expression of untargeted or ER-targeted SK1, but surprisingly not PM-targeted SK1, results in a dramatic increase in the phosphorylation of dihydrosphingosine, a metabolic precursor in de novo ceramide synthesis. Conversely, knockdown of endogenous SK1 diminishes both dihydrosphingosine-1-phosphate and S1P levels. We tested the effects of SK1 localization on degradation of S1P by depletion of the ER-localized S1P phosphatases and lyase. Remarkably, S1P produced at the PM was degraded to the same extent as that produced in the ER. This indicates that there is an efficient mechanism for the transport of S1P from the PM to the ER. In acute labeling experiments, we find that S1P degradation is primarily driven by lyase cleavage of S1P. Counterintuitively, when S1P-specific phosphatases are depleted, acute labeling of S1P is significantly reduced, indicative of a phosphatase-dependent recycling process. We conclude that the localization of SK1 influences the substrate pools that it has access to and that S1P can rapidly translocate from the site where it is synthesized to other intracellular sites.51: 2546–2559.
Biochemical Journal | 2000
Ling Lan; Sandra Isenmann; Binks W. Wattenberg
A distinct class of proteins contain a C-terminal membrane anchor and a cytoplasmic functional domain. A subset of these proteins is targeted to the mitochondrial outer membrane. Here, to probe for the involvement of a saturable targeting mechanism for this class of proteins, and to elucidate the roles of chaperone proteins and ATP, we have utilized an in vitro targeting system consisting of in vitro-synthesized proteins and isolated mitochondria. To establish the specificity of targeting we have used a closely related protein pair. VAMP-1A and VAMP-1B are splice variants of the vesicle-associated membrane protein/synaptobrevin-1 (VAMP-1) gene. In intact cells VAMP-1B is targeted to mitochondria whereas VAMP-1A is targeted to membranes of the secretory pathway, yet these isoforms differ by only five amino acids at the extreme C-terminus. Here we demonstrate that, in vitro, VAMP-1B is imported into both intact mitochondria and mitochondrial outer-membrane vesicles with a 15-fold greater efficiency than VAMP-1A. We generated and purified bacterially expressed fusion proteins consisting of the C-terminal two-thirds of VAMP-1A or -1B proteins fused to glutathione S-transferase (GST). Using these fusion proteins we demonstrate that protein targeting and insertion is saturable and specific for the VAMP-1B membrane anchor. To elucidate the role of cytosolic chaperones on VAMP-1B targeting, we also used the purified, Escherichia coli-derived fusion proteins. (33)P-Labelled GST-VAMP-1B(61-116), but not GST-VAMP-1A(61-118), was efficiently targeted to mitochondria in a chaperone-free system. Thus the information required for targeting is contained within the targeted protein itself and not the chaperone or a chaperone-protein complex, although chaperones may be required to maintain a transport-competent conformation. Moreover, ATP was required for transport only in the presence of cytosolic chaperone proteins. Therefore the ATP requirement of transport appears to reflect the participation of chaperones and not any other ATP-dependent step. These data demonstrate that targeting of C-terminally anchored proteins to mitochondria is sequence specific and mediated by a saturable mechanism. Neither ATP nor chaperone proteins are strictly required for either specific targeting or membrane insertion.