Binod Lekhak
Tribhuvan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Binod Lekhak.
BMC Research Notes | 2012
Pankaj Baral; Sanjiv Neupane; Bishnu Prasad Marasini; Kashi Ram Ghimire; Binod Lekhak; Basudha Shrestha
BackgroundUrinary Tract Infection (UTI) is one of the most common infectious diseases and people of all age-groups and geographical locations are affected. The impact of disease is even worst in low-resource developing countries due to unaware of the UTIs caused by multidrug-resistant (MDR) pathogens and the possibility of transfer of MDR traits between them. The present study aimed to determine the prevalence of MDR bacterial isolates from UTI patients, the antibiotic resistance pattern and the conjugational transfer of multidrug resistance phenotypes in Escherichia coli (E. coli).ResultsTwo hundred and nineteen bacterial isolates were recovered from 710 urine samples at Kathmandu Model hospital during the study period. All samples and isolates were investigated by standard laboratory procedures. Among the significant bacterial growth (30.8%, 219 isolates), 41.1% isolates were MDR. The most prevailing organism, E. coli (81.3%, 178 isolates) was 38.2% MDR, whereas second most common organism, Citrobacter spp. (5%, 11 isolates) was found 72.7% MDR. Extended-spectrum β-lactamase (ESBL) production was detected in 55.2% of a subset of MDR E. coli isolates. Among the 29 MDR E. coli isolates, plasmids of size ranging 2-51 kb were obtained with different 15 profiles. The most common plasmid of size 32 kb was detected in all of the plasmid-harbored E. coli strains. The majority of E. coli isolates investigated for the multidrug resistance transfer were able to transfer plasmid-mediated MDR phenotypes along with ESBL pattern with a frequency ranging from 0.3 × 10-7 to 1.5 × 10-7 to an E. coli HB101 recipient strain by conjugation. Most of the donor and recipient strain showed high levels of minimum inhibitory concentration (MIC) values for commonly-used antibiotics.ConclusionsThe high prevalence of multidrug resistance in bacterial uropathogens was observed. Particularly, resistance patterns were alarmingly higher for amoxycillin, co-trimoxazole, flouroquinolones and third-generation cephalosporins, which necessitate the re-evaluation of first and second line therapies for UTI. In addition, conjugational co-transfer of MDR phenotypes with ESBL-positive phenotypes was observed in MDR E. coli.
Canadian Journal of Infectious Diseases & Medical Microbiology | 2017
Raghabendra Adhikari; Narayan Dutt Pant; Sanjeev Neupane; Mukesh Neupane; Roshan Bhattarai; Sabita Bhatta; Raina Chaudhary; Binod Lekhak
The present study was conducted to evaluate the performance of cefoxitin disc diffusion method and oxacillin broth microdilution method for detection of methicillin resistant S. aureus (MRSA), taking presence of mecA gene as reference. In addition, inducible clindamycin resistance and beta-lactamase production were studied and minimum inhibitory concentration (MIC) of vancomycin for S. aureus isolates was determined. A total of 711 nonrepeated pus/wound swab samples from different anatomic locations were included in the study. The Staphylococcus aureus was identified on the basis of colony morphology, Grams stain, and biochemical tests. A total of 110 (15.47%) S. aureus isolates were recovered, of which 39 (35.50%) isolates were identified as MRSA by cefoxitin disc diffusion method. By oxacillin broth microdilution method, 31.82% of the Staphylococcus aureus isolates were found to be MRSA. However, mecA gene was present in only 29.1% of the isolates. Further, beta-lactamase production was observed in 71.82% of the isolates, while inducible clindamycin resistance was found in 10% of S. aureus isolates. The MIC value of vancomycin for S. aureus ranged from 0.016 μg/mL to 1 μg/mL. On the basis of the absolute sensitivity (100%), both phenotypic methods could be employed for routine diagnosis of MRSA in clinical microbiology laboratory; however cefoxitin disc diffusion could be preferred over MIC method considering time and labour factor.
Annals of Clinical Microbiology and Antimicrobials | 2017
Ankit Belbase; Narayan Dutt Pant; Krishus Nepal; Bibhusan Neupane; Rikesh Baidhya; Reena Baidya; Binod Lekhak
BackgroundThe increasing drug resistance along with inducible clindamycin resistance, methicillin resistance and biofilm production among the strains of Staphylococcus aureus are present as the serious problems to the successful treatment of the infections caused by S. aureus. So, the main objectives of this study were to determine the antimicrobial susceptibility patterns along with the rates of inducible clindamycin resistance, methicillin resistance and biofilm production among the strains of S. aureus isolated from pus/wound swab samples.MethodsA total of 830 non-repeated pus/wound swab samples were processed using standard microbiological techniques. The colonies grown were identified on the basis of colony morphology, Gram’s stain and biochemical tests. Antimicrobial susceptibility testing was performed by Kirby–Bauer disc diffusion technique. Detection of inducible clindamycin resistance was performed by D test, while detection of methicillin resistant S. aureus (MRSA) was performed by determination of minimum inhibitory concentration of oxacillin by agar dilution method. Similarly, detection of biofilm formation was performed by microtiter plate method. Strains showing resistance to three or more than three different classes of antibiotics were considered multidrug resistant.ResultsTotal 76 samples showed the growth of S. aureus, among which 36 (47.4%) contained MRSA and 17 (22.4%) samples were found to have S. aureus showing inducible clindamycin resistance. Among the S. aureus isolated from outpatients, 41.9% were MRSA. Highest rates of susceptibility of S. aureus were seen toward linezolid (100%) and vancomycin (100%). Similarly, S. aureus isolated from 35 (46.1%) samples were found to be biofilm producers. Higher rate of inducible clindamycin resistance was seen among MRSA in comparison to methicillin susceptible S. aureus (MSSA). Similarly, higher rates of multidrug resistance and methicillin resistance were found among biofilm producing strains in comparison to biofilm non producing strains.ConclusionsThe rate of isolation of MRSA from community acquired infections was found to be high in Nepal. Increased rate of inducible clindamycin resistance as compared to previous studies in Nepal was noted. So for the proper management of the infections caused by S. aureus, D test for the detection of inducible clindamycin resistance should be included in the routine laboratory diagnosis. Further, detection of biofilm production should also be included in the routine tests. Linezolid and vancomycin can be used for the preliminary treatment of the serious infections caused by S. aureus.
Annals of Clinical Microbiology and Antimicrobials | 2017
Krishus Nepal; Narayan Dutt Pant; Bibhusan Neupane; Ankit Belbase; Rikesh Baidhya; Ram Shrestha; Binod Lekhak; Dwij Raj Bhatta; Bharat Jha
BackgroundExtended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production in Klebsiella pneumoniae and Escherichia coli are the commonest modes of drug resistance among these commonly isolated bacteria from clinical specimens. So the main purpose of our study was to determine the burden of ESBL and MBL production in E. coli and K. pneumoniae isolated from clinical samples. Further, the antimicrobial susceptibility patterns of E. coli and K. pneumoniae were also determined.MethodsA cross-sectional study was conducted at Om Hospital and Research Centre, Kathmandu, Nepal by using the E. coli and K. pneumoniae isolated from different clinical samples (urine, pus, body fluids, sputum, blood) from May 2015 to December 2015. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Extended spectrum beta-lactamase production was detected by combined disc method using ceftazidime and ceftazidime/clavulanic acid discs and cefotaxime and cefotaxime/clavulanic acid discs. Similarly, metallo beta-lactamase production was detected by combined disc assay using imipenem and imipenem/ethylenediaminetetracetate discs. Bacteria showing resistance to at least three different classes of antibiotics were considered multidrug resistant (MDR).ResultsOf total 1568 different clinical samples processed, 268 (17.1%) samples were culture positive. Among which, E. coli and K. pneumoniae were isolated from 138 (51.5%) and 39 (14.6%) samples respectively. Of the total isolates 61 (34.5%) were ESBL producers and 7 (4%) isolates were found to be MBL producers. High rates of ESBL production (35.9%) was noted among the clinical isolates from outpatients, however no MBL producing strains were isolated from outpatients. Among 138 E. coli and 39 K. pneumoniae, 73 (52.9%) E. coli and 23 (59%) K. pneumoniae were multidrug resistant. The lowest rates of resistance was seen toward imipenem followed by piperacillin/tazobactam, amikacin and cefoperazone/sulbactam.ConclusionsHigh rate of ESBL production was found in the E. coli and K. pneumoniae isolated from outpatients suggesting the dissemination of ESBL producing isolates in community. This is very serious issue and can’t be neglected. Regular monitoring of rates of ESBL and MBL production along with multidrug resistance among clinical isolates is very necessary.
International Journal of Microbiology | 2017
Salu Rai; Uday Narayan Yadav; Narayan Dutt Pant; Jaya Krishna Yakha; Prem Prasad Tripathi; Asia Poudel; Binod Lekhak
In Nepal, little is known about the microbiological profile of wound infections in children and their antimicrobial susceptibility patterns. Total of 450 pus/wound swab samples collected were cultured using standard microbiological techniques and the colonies grown were identified with the help of biochemical tests. The antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Methicillin-resistant Staphylococcus aureus isolates were detected by using cefoxitin disc and confirmed by determining minimum inhibitory concentrations (MIC) of oxacillin. 264 (59%) samples were culture positive. The highest incidence of bacterial infections was noted in the age group of less than 1 year (76%). Out of 264 growth positive samples, Gram-positive bacteria were isolated from 162 (61%) samples and Gram-negative bacteria were found in 102 (39%) samples. Staphylococcus aureus (99%) was the predominant Gram-positive bacteria isolated and Pseudomonas aeruginosa (44%) was predominant Gram-negative bacteria. About 19% of S. aureus isolates were found to be methicillin-resistant MIC of oxacillin ranging from 4 μg/mL to 128 μg/mL. Among the children of Nepal, those of age less than 1 year were at higher risk of wound infections by bacteria. Staphylococcus aureus followed by Pseudomonas aeruginosa were the most common bacteria causing wound infections in children.
Brazilian Journal of Infectious Diseases | 2013
Pankaj Baral; Sanjiv Neupane; Basudha Shrestha; Kashi Ram Ghimire; Bishnu Prasad Marasini; Binod Lekhak
Limited information is available regarding AmpC β-lactamase (ABL)-producing Enterobacteriaceae compared to extended-spectrum β-lactamase-producing enterobacteria. Since ABL-producing organisms are often resistant to multiple antimicrobial agents, therapeutic options against these pathogens are limited. Among 230 clinical Enterobacteriaceae isolates, 64 (27.8%) were found to produce ABL in our study. Escherichia coli (83.9%) was a predominant pathogen, followed by Citrobacter freundii (5.2%). A significant proportion of ABL-producing isolates (81.3%) were found to be multidrug resistant against commonly used antibiotics. Univariate analysis showed that prior history of taking antibiotics (odds ratio [OR], 5.278; confidence interval [CI], 2.838-9.817; p<0.001) and being inpatients (OR, 4.587; CI, 2.132-9.9; p<0.001) were associated with ABL positivity. Regular antimicrobial resistance surveillance for ABL-producing Enterobacteriaceae is warranted for proper antimicrobial treatment strategy and policy making due to ABL-positive infections.
Annals of Clinical Microbiology and Antimicrobials | 2017
Ankit Belbase; Narayan Dutt Pant; Krishus Nepal; Bibhusan Neupane; Rikesh Baidhya; Reena Baidya; Binod Lekhak
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Erratum to: Ann Clin Microbiol Antimicrob (2017) 16:15 DOI 10.1186/s12941‐017‐0194‐0 The authors of this paper [1] would like to include some extra information regarding the methodology of this research. This information is provided below: In the study, 830 various non-repeated clinical specimens were processed among which 76 (67 wound swab/pus samples, 5 catheter tips, 3 sterile body fluids and 1 tissue abscess) samples showed growth of S. aureus.
Scientific World | 2010
Tista Prasai; Binod Lekhak; Dev Raj Joshi; Madhav Prasad Baral
Nepal Journal of Science and Technology | 2010
Tara Devi Gurung; Chringma Sherpa; V. P. Agrawal; Binod Lekhak
Scientific World | 2010
Anup Muni Bajracharya; Kayo Devi Yami; Tista Prasai; Shital Raj Basnyat; Binod Lekhak