Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Binoy Appukuttan is active.

Publication


Featured researches published by Binoy Appukuttan.


Nature | 2008

Sequence- and target-independent angiogenesis suppression by siRNA via TLR3

Mark E. Kleinman; Kiyoshi Yamada; A. Takeda; Vasu Chandrasekaran; Miho Nozaki; Judit Z. Baffi; Romulo Albuquerque; S. Yamasaki; M. Itaya; Yuzhen Pan; Binoy Appukuttan; Daniel Gibbs; Zhenglin Yang; Katalin Karikó; Balamurali K. Ambati; Traci A. Wilgus; Luisa A. DiPietro; Eiji Sakurai; Kang Zhang; Justine R. Smith; Ethan Will Taylor; Jayakrishna Ambati

Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-α/β activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-γ and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3–RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world’s population, and that siRNAs might induce unanticipated vascular or immune effects.


Science | 2008

Human CHN1 Mutations Hyperactivate α2-Chimaerin and Cause Duane's Retraction Syndrome

Noriko Miyake; John K. Chilton; Maria Psatha; Long Cheng; Caroline Andrews; Wai-Man Chan; Krystal Law; Moira Crosier; Susan Lindsay; Michelle C.M. Cheung; James P. Allen; Nick J. Gutowski; Sian Ellard; Elizabeth Young; Alessandro Iannaccone; Binoy Appukuttan; J. Timothy Stout; Stephen P. Christiansen; Maria Laura Ciccarelli; Alfonso Baldi; Mara Campioni; Juan Carlos Zenteno; Dominic Davenport; Laura E. Mariani; Mustafa Sahin; Sarah Guthrie; Elizabeth C. Engle

Duanes retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes α2-chimaerin, a Rac guanosine triphosphatase–activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase α2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance α2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant α2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that α2-chimaerin has a critical developmental function in ocular motor axon pathfinding.


PLOS ONE | 2010

Non-Invasive Stem Cell Therapy in a Rat Model for Retinal Degeneration and Vascular Pathology

Shaomei Wang; Bin Lu; Sergei Girman; Jie Duan; T.J. McFarland; Qing Shuo Zhang; Markus Grompe; Grazyna Adamus; Binoy Appukuttan; Raymond D. Lund

Background Retinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs) to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS) rat, a well-established animal model for RP. Methodology/Principal Findings Animals received syngeneic MSCs (1×106 cells) by tail vein at an age before major photoreceptor loss. Principal results: both rod and cone photoreceptors were preserved (5–6 cells thick) at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells) and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs. Conclusions/Significance These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort. Therefore, MSCs may prove to be the ideal cell source for auto-cell therapy for retinal degeneration and other ocular vascular diseases.


Human Molecular Genetics | 2008

Rhesus monkeys and humans share common susceptibility genes for age-related macular disease

Peter J. Francis; Binoy Appukuttan; Emily Simmons; N. Landauer; Jonathan Stoddard; Sara C. Hamon; Jurg Ott; Betsy Ferguson; Michael L. Klein; J. Timothy Stout; Martha Neuringer

Age-related macular degeneration (AMD), a complex multigenic disorder and the most common cause of vision loss in the elderly, is associated with polymorphisms in the LOC387715/ARMS2 and HTRA1 genes on 10q26. Like humans, macaque monkeys possess a macula and develop age-related macular pathologies including drusen, the phenotypic hallmark of AMD. We genotyped a cohort of 137 unrelated rhesus macaques with and without macular drusen. As in humans, one variant within LOC387715/ARMS2 and one in HTRA1 were significantly associated with affected status. HTRA1 and the predicted LOC387715/ARMS2 gene were both transcribed in rhesus and human retina and retinal pigment epithelium. Among several primate species, orthologous exons for the human LOC387715/ARMS2 gene were present only in Old World monkeys and apes. In functional analyses, the disease-associated HTRA1 polymorphism resulted in a 2-fold increase in gene expression, supporting a role in pathogenesis. These results demonstrate that two genes associated with AMD in humans are also associated with macular disease in rhesus macaques and that one of these genes is specific to higher primates. This is the first evidence that humans and macaques share the same genetic susceptibility factors for a common complex disease.


Progress in Retinal and Eye Research | 2013

Role of the retinal vascular endothelial cell in ocular disease

Arpita S. Bharadwaj; Binoy Appukuttan; Phillip A. Wilmarth; Yuzhen Pan; Andrew J. Stempel; Timothy J. Chipps; Eric Benedetti; David O. Zamora; Dongseok Choi; Larry L. David; Justine R. Smith

Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.


Investigative Ophthalmology & Visual Science | 2009

Subretinal Transplantation of Forebrain Progenitor Cells in Nonhuman Primates: Survival and Intact Retinal Function

Peter J. Francis; Shaomei Wang; Y. Zhang; Anna Brown; Thomas S. Hwang; T.J. McFarland; Brett G. Jeffrey; Bin Lu; Lynda S. Wright; Binoy Appukuttan; David J. Wilson; J. Timothy Stout; Martha Neuringer; David M. Gamm; Raymond D. Lund

PURPOSE Cell-based therapy rescues retinal structure and function in rodent models of retinal disease, but translation to clinical practice will require more information about the consequences of transplantation in an eye closely resembling the human eye. The authors explored donor cell behavior using human cortical neural progenitor cells (hNPC(ctx)) introduced into the subretinal space of normal rhesus macaques. METHODS hNPC(ctx) transduced with green fluorescent protein (hNPC(ctx)-GFP) were delivered bilaterally into the subretinal space of six normal adult rhesus macaques under conditions paralleling those of the human operating room. Outcome measures included clinical parameters of surgical success, multifocal electroretinogram (mfERG), and histopathologic analyses performed between 3 and 39 days after engraftment. To test the effects of GFP transduction on cell bioactivity, hNPC(ctx)-GFP from the same batch were also injected into Royal College of Surgeons (RCS) rats and compared with nonlabeled hNPC(ctx). RESULTS Studies using RCS rats indicated that GFP transduction did not alter the ability of the cells to rescue vision. After cells were introduced into the monkey subretinal space by a pars plana transvitreal approach, the resultant detachment was rapidly resolved, and retinal function showed little or no disturbance in mfERG recordings. Retinal structure was unaffected and no signs of inflammation or rejection were seen. Donor cells survived as a single layer in the subretinal space, and no cells migrated into the inner retina. CONCLUSIONS Human neural progenitor cells can be introduced into a primate eye without complication using an approach that would be suitable for extrapolation to human patients.


Current Eye Research | 2008

Natural History and Histology in a Rat Model of Laser-Induced Photothrombotic Retinal Vein Occlusion

Y. Zhang; Brad Fortune; L.–O. Atchaneeyasakul; T.J. McFarland; Kristen Mose; Patrick Wallace; Julianne Main; David J. Wilson; Binoy Appukuttan; J. Timothy Stout

Purpose: To observe temporal changes in retinal physiology and histology in a rat model of laser-induced retinal vein occlusion (RVO). Methods: Ophthalmoscopy, fundus photography, and fluorescein angiography (FA) were performed following laser-induced central retinal vein occlusion (CRVO) and branch retinal vein occlusion (BRVO) immediately after laser treatment and at 3 and 6 hr and 2, 4, 7, 14, and 21 days. Retinal histology was examined at 4, 7, 14, and 21 days. Full-field electroretinogram was recorded from both eyes simultaneously at day 4. Results: For CRVO and BRVO, reperfusion of occluded branch veins was observed 1 to 2 days after treatment. Despite complete reperfusion of branch veins, retinal edema and hemorrhages peaked on day 4, and by day 14, treated retinas appeared pale and edematous upon ophthalmoscopy. In BRVO animals, retinal hemorrhages were limited to the vein-occluded region, although edema was more widespread and, to a limited extent, involved the untreated hemi-retina. Significant GCL cell loss was observed in both CRVO and BRVO groups after day 14. Regional analysis showed that relative GCL loss was greatest in the peripheral retina in BRVO group. Electroretinography disclosed moderate to severe functional deficits in photoreceptors, bipolar, and amacrine and ganglion cells. Conclusion: Laser-induced RVO in rats results in targeted vascular occlusion that persisted for 1 to 2 days. Functional deficits were evident and significant GCL cell loss was seen, notably within peripheral retina of the BRVO model. This reproducible model provides a valuable tool for the study of the molecular events associated with retinal ischemia and cell death.


Expert Opinion on Biological Therapy | 2004

Gene therapy for proliferative ocular diseases

T.J. McFarland; Y. Zhang; Binoy Appukuttan; J. Timothy Stout

Proliferative ocular diseases encompass a wide variety of pathological processes with adverse cellular differentiation, proliferation and migration as common features. Pathologies may involve neovascular responses associated with diabetic retinopathy, retinopathy of prematurity or age-related macular degeneration. These diseases are quite prevalent and account for substantial visual impairment and blindness worldwide. Although treatment strategies are largely surgical, advances in our understanding of the proteins crucial to cell transdifferentiation, proliferation and migration, along with better gene transfer techniques, have greatly increased the potential for biological treatment options. In this report, the most common proliferative ocular vascular diseases and existing therapeutic modalities will be reviewed and an overview of possible gene therapy options will be discussed, along with potential candidate genes.


Journal of Investigative Dermatology | 2014

Recombinant Filaggrin Is Internalized and Processed to Correct Filaggrin Deficiency

Thomas Stout; T.J. McFarland; John C. Mitchell; Binoy Appukuttan; J. Timothy Stout

This study was designed to engineer a functional filaggrin (FLG) monomer linked to a cell-penetrating peptide (RMR) and to test the ability of this peptide to penetrate epidermal tissue as a therapeutic strategy for genetically determined atopic dermatitis (AD). A single repeat of the murine filaggrin gene (Flg) was covalently linked to a RMR motif and cloned into a bacterial expression system for protein production. Purified FLG+RMR (mFLG+RMR) was applied in vitro to HEK-293T cells and a reconstructed human epidermis (RHE) tissue model. Immunochemistry demonstrated RMR-dependent cellular uptake of FLG+RMR in a dose- and time-dependent manner in HEK cells. Immunohistochemical staining of the RHE model identified penetration of FLG+RMR to the stratum granulosum, the epidermal layer at which FLG deficiency is thought to be pathologically relevant. In vivo application of FLG+RMR to FLG-deficient flaky tail (ft/ft) mice skin demonstrated internalization and processing of recombinant FLG+RMR to restore the normal phenotype. These results suggest that topically applied RMR-linked FLG monomers are able to penetrate epidermal tissue, be internalized into the appropriate cell type, and be processed to a size similar to wild-type functional barrier peptides to restore necessary barrier function, and prove to be therapeutic for patients with AD.


Journal of Ocular Biology, Diseases, and Informatics | 2008

Prediction of cis-regulatory elements controlling genes differentially expressed by retinal and choroidal vascular endothelial cells

Dongseok Choi; Binoy Appukuttan; Sierra J. Binek; Stephen R. Planck; J. Timothy Stout; James T. Rosenbaum; Justine R. Smith

Cultured endothelial cells of the human retina and choroid demonstrate distinct patterns of gene expression. We hypothesized that differential gene expression reflected differences in the interactions of transcription factors and respective cis-regulatory motifs(s) in these two endothelial cell subpopulations, recognizing that motifs often exist as modules. We tested this hypothesis in silico by using TRANSFAC Professional and CisModule to identify cis-regulatory motifs and modules in genes that were differentially expressed by human retinal versus choroidal endothelial cells, as identified by analysis of a microarray data set. Motifs corresponding to eight transcription factors were significantly (p < 0.05) differentially abundant in genes that were relatively highly expressed in retinal (i.e., glucocorticoid receptor, high mobility group AT-hook 1, heat shock transcription factor 1, p53, vitamin D receptor) or choroidal (i.e., transcription factor E2F, Yin Yang 1, zinc finger 5) endothelial cells. Predicted cis-regulatory modules were quite different for these two groups of genes. Our findings raise the possibility of exploiting specific cis-regulatory motifs to target therapy at the ocular endothelial cells subtypes responsible for neovascular age-related macular degeneration or proliferative diabetic retinopathy.

Collaboration


Dive into the Binoy Appukuttan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge